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Abstract

Revenue optimization is usually based on a model of market de-
mand. In practice, the true model cannot be known and has to be
estimated from observed sales and availabilities. As airline revenue
management systems become increasingly sophisticated, the number
of parameters in the demand model grows, rendering demand estima-
tion a challenging endeavor.

This paper formulates the demand estimation and revenue opti-
mization problem as a state-space model and illustrates that it closely
relates to well-known models in control theory. Based on this, we ap-
ply techniques developed in this field for Bayesian Learning and Dual
Control, Kalman and Particle Filters.

In a simulation study, we evaluate these methods as adapted to de-
mand estimation for revenue management using the Posterior Cramér-
Rao Bound as a benchmark. We compare the results to those achieved
by two more common approaches, simple estimation and maximum
likelihood estimation.
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With respect to forecast quality, we find the performance of the
Unscented Kalman Filter to be superior to the alternatives considered.
In addition, we point out that this estimation method yields auxiliary
information about the uncertainty of the current estimate from which
estimation itself, but also revenue optimization and interaction with
a human analyst may benefit.

1 Introduction

Airline revenue management (ARM) as a field of operations research has
been focused on maximizing revenue through optimal inventory controls at
least since the publication of Littlewood (1972). Earlier research concen-
trated on the problem of overbooking, preparing the way by establishing a
feedback loop between observations, forecast, and capacity allocation. Based
on a forecast of differentiated demand segments, the same product can be
offered at multiple prices, thereby optimally utilizing the different customers’
willingness-to-pay. As the segmentation of demand follows a forecast that is
based on demand estimates derived from observed sales, the quality of these
estimates often decisively influences ARM success. For a short account of
the history of revenue management with special regards to the airline in-
dustry please refer to Horner (2000); a thorough introduction to established
methods is given in Talluri and van Ryzin (2005).

As pointed out in the literature review of this paper (Section 2), classic
operations research approaches to ARM frequently regard forecast and opti-
mization as independent problems. So far, very few contributions applying
control theory to revenue management seem to exist. By considering ARM
from the perspective of control theory, we emphasize the consequences of
the underlying feedback loop: Sales are observed based on inventory controls
that are optimized according to demand estimates derived from sales.

Our contribution aims to further the application of control theory to ARM
by introducing a state-space model and using it to introduce new demand
estimates based on Unscented Kalman and Particle Filters (UKF and PF).
We evaluate the results using the Posterior Cramér-Rao Bound (PCRB) as
a benchmark. Comparing the results to those of simple estimation (SE) and
maximum likelihood estimation (MLE), we find that UKF and PF produce
a forecast error that is orders of magnitude smaller than that of SE and per-
forms close to the MLE and the PCRB. Moreover, lost revenue compared

2



to what could be achieved given so-called “perfect” forecast is less than 1%.
As detailed in Section 6, not only do approaches to demand estimation as
derived from control theory perform well for revenue management, they also
provide information on the uncertainty of the current estimate. This addi-
tional information is potentially valuable for finding the appropriate level of
detail in forecasting, improving optimization and helps the human analyst
reconciling her own intuition with demand estimates from the ARM system.

The following section first summarizes research on revenue management
that explicitly considers the problem of demand learning. It introduces lit-
erature on the methods we adapt (UKF and PF) and the benchmark we
evaluate them against (PCRB). Following the description of the ARM pro-
cess from a control perspective (Section 3), we formulate demand estimation
and revenue optimization as a state-space model (Section 4). Based on this,
we adapt techniques developed for Bayesian Learning and Dual Control. In a
simulation study, we evaluate the results with respect to revenue and forecast
quality, comparing them to simple estimation and maximum likelihood esti-
mation (Section 5). The final section discusses our contributions in further
detail and provides an outlook to future research.

2 Literature Review

This section introduces relevant research as the basis for the proposed model
and approaches. First, existing efforts combining revenue optimization and
demand learning are summarized and related to our contribution. The second
part of this review provides an introduction to Kalman and Particle Filters as
tools for estimation. Finally, we introduce the Posterior Cramér-Rao Bound
as a benchmark for demand estimates.

2.1 Revenue Management with Demand Learning

Many works on revenue management assume that the underlying demand
model is known and exclusively focus on improving optimization methodol-
ogy. However, a small stream of research examining dynamic pricing prob-
lems is closely related to our work in that it considers the problem of demand
learning explicitly.

Bitran and Wadhwa (1996) consider a dynamic pricing problem for sea-
sonal products. They model customer arrivals as a Poisson process with a
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known but potentially time-variant rate. Each customer’s reservation price is
drawn from a probability distribution with a potentially unknown parameter
and may vary over time. There is only a single product, which a customer will
purchase if her willingness-to-pay exceeds the price of the product. Bitran
and Wadhwa (1996) develop a Bayesian update procedure for the reservation
price distribution parameter, assuming that the arrival rate is known. They
allow for some demand changes between time periods, but these cannot be
random and have to be known to the modeler.

Lobo and Boyd (2003) also consider a dynamic pricing problem, using a
linear demand model with an intercept and one coefficient corresponding to
price. The parameters of the model are unknown and drawn from a Gaussian
distribution. The authors provide equations of the Bayesian update that are
equivalent to Kalman Filter equations. In this setting, they consider the ac-
tive learning problem. In traditional learning, demand estimation is passive
in that it only observes prices or availabilities and cannot directly influence
them. However, an incentive to select prices or availabilities that improve de-
mand estimation can exist. This will result in short-term revenue losses, but
these may be outweighed by future revenue gains based on superior demand
estimates. Lobo and Boyd (2003) develop an approximate solution to the ac-
tive learning problem, using convex semi-definite programming techniques.
Our work is closely related to theirs, but focuses on revenue management
rather than on dynamic pricing. Also, we allow for additional flexibility in
the specification of the demand model.

Carvalho and Puterman (2004) assume a log-linear demand function with
unknown parameters and also rely on Kalman Filter equations for Bayesian
Learning. The authors develop a one-step-look-ahead strategy based on a
second degree Taylor expansion of the expected future revenue as a heuristic
solution to the active learning problem. They compare this pricing policy to
various other schemes, including a myopic strategy, random price variation
and a “softmax” strategy using Monte Carlo simulations. In their setting, the
myopic policy clearly under-performs, and the one-step-look-ahead strategy
yields slightly higher expected revenues than the alternatives.

Aviv and Pazgal (2005) provide a model of Bayesian Demand Learning
where customers arrive in a Poisson process with unknown rate. They model
arrival rate uncertainty as a Gamma distribution to achieve a simple update
rule for the belief distribution. Price-sensitivity is modeled as an exponen-
tial distribution with a known mean. The authors focus on the distinction
between active and passive learning. In their setting, the benefits of active

4



learning are minor as long as the level of uncertainty is not too high (this con-
trasts with the results in Carvalho and Puterman (2004)). Aviv and Pazgal
(2005) conclude that the passive learning approach is a reasonable heuristic.
Intuitively, this may be attributed to the assumption that price-sensitivity is
known.

Sen and Zhang (2009) also model demand as a Poisson process with an
unknown arrival rate. The reservation price distribution is unknown as well,
but can be derived from a finite set of candidate distributions. The authors
provide a Bayesian Learning model to jointly estimate the arrival rate and the
reservation price distribution. The information requirements of their method
increase with the number of candidate distributions, making it crucial for
practical implementations to restrict the candidate set as much as possible.

Vulcano et al. (2012) consider a model where customer arrivals form a
Poisson process and customers choose from the subset of currently available
products according to an multi-nomial-logit model of choice. They present
a re-formulation of the estimation problem in terms of so-called “Primary
Demand”: the demand for a product when all alternatives are available.
The re-formulation yields a much simplified estimation maximization (EM)
procedure to find a maximum likelihood estimate, both of the arrival rate
and the product valuations. The method developed is not a demand learning
method per se, since it does not allow for incremental updates in the demand
estimates. Instead, all historical data has to be processed every time the
demand estimate is updated.

A slightly different approach is taken by Stefanescu (2009) and Kwon
et al. (2009). Stefanescu (2009) models demand as a multivariate Gaussian
distribution. She argues that customer choice modeling may not be appro-
priate in the face of customer heterogeneity or missing data, e.g. about
competitors’ offers. Her model uses demand correlation to account for time
and inter-product dependence. The author develops an EM algorithm to
estimate this model based on censored data, which shows promising results.
Again, this is not strictly demand learning, since the EM algorithm requires
the complete data set to update the current estimate. Moreover, the descrip-
tive nature of this demand model seems less suited as an input for revenue
optimization.

Kwon et al. (2009) consider “non-cooperative competition among revenue
maximizing service providers”. Each firm uses a Kalman Filter to estimate
the parameters of the demand model. Demand is deterministic and inde-
pendent between different products, but it depends exclusively on past and
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current market prices in a linear fashion. The authors assume that the coef-
ficients of their demand model evolve according to a random walk, similar to
the assumption in this thesis. However, they model the dynamics of demand
parameters only over a single, continuous selling horizon. While this model
seems appropriate in a retail setting, it does not realistically capture demand
dynamics in airline revenue management, where demand evolves both over
the selling horizon of a particular flight and between consecutive flights.

Li et al. (2009) and Chung et al. (2012) extend the model of Kwon et al.
(2009) by allowing for a much more general form of demand evolution over the
selling horizon. Moreover, they highlight the notion of a state-space model
to formulate the dynamic pricing and demand estimation problem and use
a Markov chain Monte Carlo technique for parameter estimation. Yet, their
demand model is still very limited, in that it does not include stochastic
demand, dependence between products nor demand evolution between con-
secutive flights.

In this paper, we consider the ARM problem for a single firm, formulat-
ing it as a state-space model. In contrast to the group of papers mentioned
above Kwon et al. (2009); Li et al. (2009); Chung et al. (2012), we do allow
for stochastic demand and a more general, non-linear price-dependence of
demand. Moreover, demand evolution and demand learning is accomplished
between consecutive selling seasons and not within. As such, we believe
that our model is more suited in the context of airline revenue management.
Based on our model, we adapt non-linear Kalman and Particle Filters to cre-
ate new estimates from censored data. In contrast to the method developed
in Vulcano et al. (2012), the filter methods are applicable to a wider range
of demand or choice models and completely avoid the convergence problems
of the EM algorithm.

We are not the first to use a Kalman filter for demand estimation in
a revenue management context, as noted in the literature review. In fact,
(Talluri and van Ryzin, 2005, p. 458ff.) describe the Kalman Filter as
a general method for time-series forecasting, however without making the
actual connection to a concrete revenue management problem. In this paper,
we pick up from there and show how to model the airline revenue management
problem such, that it is amenable to the general Kalman Filter formulation.
We observe that the assumptions of the original Kalman Filter are too strict
for most demand models, and consequently we consider extensions of the
Kalman Filter to non-linear and non-Gaussian models.
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2.2 Kalman Filter and Extensions

The Kalman Filter has been designed to iteratively estimate the hidden state
of a system based on indirect and noisy observations. Starting with the origi-
nal paper of Kalman (1960), a tremendous amount of work has been put into
extending the model in various directions and adapting it to numerous ap-
plication areas. We limit our overview to contributions that are of particular
relevance to the work presented in this paper.

Kalman (1960) considers a state-space model, in which the state of a
system at a time t is a linear function of the state at time t − 1 plus some
Gaussian error term. This state, however, is never directly observed; instead,
it is only available through a linear observation function with some Gaussian
measurement noise. Both the state evolution function and the measurement
function can be time-dependent. Given a Gaussian prior distribution for the
system state, one can show that both the posterior as well as the prior for
the next time step are also Gaussian and that the minimum least squares
estimator has a closed-form solution. Moreover, past observations influence
the current estimate only through the prior distribution of the system state.
As this distribution is Gaussian, it is sufficient to keep track of the mean and
the covariance matrix of the system state: old observations can be discarded.
These properties make the Kalman Filter computationally efficient in terms
of time and memory requirements.

The original Kalman Filter formulation puts strong assumptions on the
underlying process model. In our model, we identify the observation function
with the demand model. Hence, requiring a linear observation function would
severely restrict the set of permissible demand models. Additionally, the
original model assumes observations to also follow a Gaussian distribution.
Even though demand has been modeled as such in ARM literature (Belobaba
(1989)), this assumption seems to be inappropriate for booking data that is
non-negative and integer, especially if overall demand is relatively small.

Julier and Uhlmann (1997) address the problem of non-linearity in the
state evolution function and in the observation function. They use an ap-
proximate approach based on an alternative parametrization of the normal
distribution, the so-called unscented transform, resulting in an Unscented
Kalman Filter (UKF). While still conceptually simple and computationally
efficient, this method outperforms other methods overcoming the linearity
restriction. We therefore selected the UKF as one of our candidate methods
and adapted it to our problem domain in which the form of the observation
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function enables significant computational short-cuts.

2.3 Particle Filter

The Particle Filter (PF) represents an alternative approach to the above
described Kalman Filters. It employs Monte Carlo sampling to estimate the
state of a system; in our case, the ARM demand model. PF uses a large set of
discrete points – a “particle cloud” – to approximate the posterior probability
distribution. As such it requires no assumption on the parametric form of this
distribution. PF is closely related to Monte Carlo integration methods with
importance sampling. Therefore, it is also known as a Sequential Importance
Resampling Filter.

The earliest reference to this approach that we are aware of is Müller
(1991), who proposes a PF with rejection sampling to estimate the param-
eters in general dynamic models. Two years later, Gordon et al. (1993) in-
troduce an Importance Resampling Filter, which is very close to the method
presented here. However, while Gordon et al. (1993) perform the resampling
at every time step, we only resample when necessary. Independently of these
two references, Kitagawa (1996) proposes essentially the same algorithm as
Gordon et al. (1993). Doucet et al. (2000) provide a review of a variety of
PF methods and develop a general framework.

2.4 Posterior Cramér-Rao Bound

Finally, we turn to a concept for the evaluation of estimates: The Cramér-
Rao bound provides a lower bound for the mean squared error of an estimate,
which has to hold for any concrete estimation method.

The original Cramér-Rao bound is based on time-invariant models. How-
ever, an extension, the Posterior Cramér-Rao bound (PCRB) is applicable
in the context of this paper. Its dynamics over time for the discrete-time
nonlinear filter problem were derived by Tichavsky et al. (1998).

This bound can be computed for many models where an exact solution
to the estimation problem is not available. It can thus serve as an absolute
benchmark to compare approximate estimation methods against – such as
UKF and PF described above.
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3 Airline Revenue Management from a Con-

trol Perspective

A control perspective highlights the ARM feedback loop linking inventory
optimization and sales. This emphasizes the resulting complexity of demand
estimation from censored data. The following description of the ARM model
from a control perspective creates the foundation for the state space model
and the adaptation of filtering methods documented in the next section.

3.1 Airline Revenue Management Model

We consider an ARM system with distinct estimation and forecasting. The
system is abstract in that it assumes no specific methods for demand esti-
mation, forecasting, optimization or inventory control. We assume that the
system can be decomposed into forecaster, optimizer and inventory and that
the system controls the availability of booking classes rather than controlling
the price directly.

ARM methods without distinct forecasts, such as reinforcement learning
and a large body of literature on dynamic pricing violates the above assump-
tions. Nevertheless, in the airline industry, the additional value of demand
forecasts extends beyond revenue management, e.g. forming an input to fleet
assignment. The pervasive use of the booking class standard throughout the
reservation and check-in processes prevents the adoption of dynamic pric-
ing methods in practice in the foreseeable future. Therefore, we believe the
model presented here is general enough to describe the ARM systems used
by traditional network carriers.

Figure 1 provides an overview of the ARM system as a whole. In the real
world, the “Update” step is performed by deriving new bookings from the
interplay of inventory controls with market demand. In contrast, a simulation
system as used in Section 5 relies on artificially generated demand. The
remainder of this section describes the system components in further detail.

3.1.1 Forecaster

The forecaster is defined by a demand model and an estimation procedure
for that model. The demand model provides a mapping Ha from product
availabilities a and a vector of demand parameters x to a distribution of
bookings for each product Ha(x). Here, a product is any individually sold

9



Forecaster 

Demand Model 

Choice Model  H 

Parameters  x 

Availability  A: b!A(b) 

! Expected 

Bookings:  HA(x) 

Estimation 

„x ≈ HA
-1(B)“ 

!"#$HA(x) 

lnventory 

Optimizer 

Price Vector  f 

Determine/Approximate 

A* ≈ argmaxA f
THA(x) 

Booking  
History B 

A* Update 

%&'()*$+$,&(-$./$01'2-(3&*$

RM System 

World 

Figure 1: Our model of a traditional ARM system

offer, typically a specific booking class for a specific itinerary over the airline’s
network on a particular date and time, sold a specific number of days before
departure in a specific point of sale. The availability of a product usually
depends on the number of seats already sold or on the flights included in
the itinerary. Hence, we express the availability as a function of the current
vector of bookings b. Capacity is assumed to be constant and is therefore
suppressed from our notation.

The choice model Ha(x) can be any function of a and x, as long as the re-
strictions on permitted sales for each product as prescribed by a are obeyed.
E.g., Ha(x) could assume independent demand, in which case expected book-
ings for a product only depend on the product’s own availability. In the most
general case, expected bookings for a product depend on the availabilities of
all other products. Independent demand is an unrealistic assumption but
has been used in practice due to its simplicity. The completely dependent
model provides the most flexible description of demand, but with billions of
offered products, it quickly becomes intractable. Realistic and efficient de-
mand models therefore severely restrict the set of dependencies, e.g. to the
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set of booking classes for the same itinerary or to a set of similar itineraries
for the same combination of origin and destination.

The parameter vector x encapsulates whatever is a priori unknown about
the demand model. The length of the vector and the interpretation of its
components depends on the concrete model. When assuming independent
demand, xmay simply represent the expected bookings per available product.
For dependent demand, at least some components of x have to describe the
dependency on other products’ availabilities. This may be implemented,
for instance, by including a price-sensitivity parameter in x or by modeling
overlapping demand. Additionally, x may also contain seasonality factors or
weekday patterns.

Since x is unknown to the modeler, it has to be estimated from ob-
served sales. This means that we try to find the probability distribution of x
conditional on the history of booking vectors B = {b1, . . . , bT} and the his-
tory of availabilities A = {a1, . . . , aT}. Alternatively, we might only obtain
some property of this distribution, such as its mode, which would yield the
maximum-likelihood estimate, or its mean, which would yield the expected
value of x conditional on the observations. We defer further discussion of
the estimation problem to Section 3.2 and continue with the assumption
that there exists some estimate of x, either a probability distribution or a
point-estimate.

Finally, the forecaster computes the expected bookings (or the distribu-
tion thereof) for all feasible availability functions using the current demand
estimate x. Availability functions are feasible if they obey the capacity con-
straints and can be implemented by the inventory. The predictive power
of the demand model is crucial for this step, as it allows the forecaster to
provide the number of expected bookings even for availability situations that
were never observed. In practice, no forecaster iterates over all feasible avail-
ability functions and computes a list of expected booking vectors: Such a
list would be prohibitively long. However, characteristics of efficient demand
models such as limited dependence usually allows for a much more efficient
encoding. Moreover, the optimization method’s requirements may also limit
the amount of information relevant. Information that is not used by the
optimizer need obviously not be computed by the forecaster.
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3.1.2 Optimizer

The optimizer combines the expected bookings Ha(x) for all a received from
the forecaster with the vector of prices of each product f . It calculates
the availability a∗ that maximizes fTHa∗(x). This conceptually simple step
can usually not be solved to optimality in practice due to the very large
number of potential availability functions a. Hence, heuristic methods find
an approximate solution to the optimization problem.

The optimizer’s output is the optimal availability function a∗. This func-
tion is sent to the inventory to control the acceptance of bookings.

3.1.3 Inventory

The inventory implements the availability function a∗: It offers all products,
for which a∗(b) is true and prevents the sale of all other products, b being
the vector of current bookings. Actual inventory systems constrain the set
of availability functions that can be implemented. Inventory systems may
constrain the number of bookings in a certain booking class on a particular
flight by booking limits or protection limits. Alternatively, they can set a
bid-price for each flight and only make products available for which the price
exceeds the sum of bid-prices of the flights in the itinerary. Combinations of
these techniques are also possible.

After some time interval, the booking history B and the availability his-
tory A are updated and augmented by new observations. This triggers a new
loop through the complete ARM process, from estimation to prediction to
optimization to implementation.

3.1.4 Feedback Loop

The fact that ARM systems include a feedback loop renders their long-term
dynamics non-trivial. Even for relatively simple components, the overall
behavior may be complicated and hard to predict. Choosing an availability
in the current time-period will influence the observations in the next time-
period, which will influence the future demand estimate. This may in turn
lead to a revised availability.

Specifically, if something akin to price-sensitivity is to be estimated, it
may well be worth to occasionally set availabilities that are not short-term
optimal in order to learn more about the sensitivity. If the short-term opti-
mal availability is implemented at all times, no new information about the
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sensitivity parameter may be gained. In this case, the system might get stuck
in a state far from the actual optimum.

In a realistic ARM system, the analysis of the feedback loop may be close
to impossible. Yet, the overall performance of the system strongly depends
on the feedback dynamics and a system of components that ignores this
feedback loop may be far from optimal.

3.2 Estimation Problem

For the estimation problem, we assume that the real demand parameters
are the realizations of an auto-regressive process of order 1 (AR(1)-process).
Auto-regressive processes are frequently used to model various kinds of time
series, including demand time series. We restrict ourselves to the following
particular form:

xt+1 = xt + wt wt ∼ N(0, Q) (1)

In other words, the change of parameters from time t to time t + 1 is
described by a multi-variate Gaussian random variable wt with zero mean and
covariance matrix Q. If the range of some parameters has to be constrained
to provide meaningful inputs for the choice model, we have to assume a
truncated normal distribution for wt. In the following discussion, we assume
that the real parameter values are far enough from the bounds of the valid
range for a truncation of the normal distribution to have only a minor effect.
Accordingly, we neglect this aspect.

Further, we assume that bookings follow a Poisson distribution condi-
tional on their mean. This distribution can be censored if the availability
function a limits the number of available seats. Since usually, many prod-
ucts compete for the same capacity and a majority requires more than one
seat, this censoring may link the booking distribution of almost all products
in a non-trivial way. This is the case even if the demand model does not
include dependencies.

We use the following heuristic to approximate the situation: We assume
that we know the fraction si of the observation period when product i was
available. Then, we let the bookings for product i be Poisson distributed
with an arrival rate of si · λi.
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4 Improving Estimation for Airline Revenue

Management

The framework introduced in Section 3 lends itself well to filter-type estima-
tion methods. Specifically, we have the following state-space model:

xt+1 = xt + wt wt ∼ N(0, Q) (2)

bt ∼ Poi(Ha(xt)) (3)

where, again xt is the vector of demand parameters at time t, bt is the vector
of observed bookings at time t and Ha is the choice function for availability
a.

If Ha was a linear function and the Poisson distribution in equation 3
is approximated by additive Gaussian noise, we would arrive at a standard
linear state-space model with additive Gaussian noise:

xt+1 = xt + wt wt ∼ N(0, Q) (4)

bt = Haxt + vt vt ∼ N(0, R) (5)

Due to its restrictive assumptions this is not a suitable model for our
problem. However, this model is instructive to see the connection to the
Kalman Filter, since it is the standard estimator for xt in this type of model
Kalman (1960). The Kalman Filter has a number of desirable properties. It

• is the minimum mean squared error (MMSE) estimator and attains the
PCRB exactly;

• is computationally fast;

• can be computed recursively, that is only the last estimate x̂t−1, its
covariance Pt−1 and the current observation bt are required to produce
the next estimate x̂t and its covariance Pt;

• produces not only a point estimate, but the complete posterior distri-
bution of xt given the observation history by providing the covariance
of the estimate Pt.

1

1This may be useful in optimization, e.g. to explore the state-space in the direction of
greatest uncertainty.
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Due to its advantages, a wide array of applications use the Kalman Filter.
However, it is by itself not applicable to the original model from equations
2-3. We therefore present two extensions of the Kalman Filter rendering it
applicable while preserving at least some of its desirable properties.

4.1 Unscented Kalman Filter

The Unscented Kalman Filter (UKF, Julier and Uhlmann (1997)) can handle
non-linearities both in the state evolution equation and in the observation
equation. We only make use of the latter property as the state evolution
equation (eqn. 2) of the original model is already linear. As the UKF is
a heuristic, it is not necessarily the MMSE estimator. The other proper-
ties of the Kalman Filter are preserved, with the caveat that the posterior
distribution used is only an approximation.

We formulate the UKF for a “hybrid” choice function that can be decom-
posed into a linear and a multiplicative non-linear part:

Ha(x) = Lax
L + λCa(x

N) (6)

where x = (xL, xN). Isolating the linear part of Ha allows for a much more
efficient implementation by combining a regular Kalman Filter for the linear
part with the UKF for the non-linear part. If the choice function cannot
be isolated, we can simply set La = 0. If Ca(x

N) = 0, our formulation is
identical to the original Kalman Filter.

The UKF assumes Gaussian observation errors that are not necessarily
additive. Thus, we implicitly assume the following observation equation:

bt = Lax
L
t + λCa(x

N
t ) + vt vt ∼ N(0, diag(Ha(xt))) (7)

where diag(Ha(x)) is the matrix with Ha(xt) on its diagonal and all other
entries equalling zero. Thus, the variance of the observation equals its ex-
pectation, as is consistent with a Poisson distribution.

At every time step t, the UKF will produce an estimate x̂t and a covari-
ance matrix Pt that together define the approximate current belief about the
real demand parameters. In other words, x̂t and Pt are the parameters of the
approximate posterior distribution of xt, given all observations up to time t.

The estimation algorithm2 is as follows. First, decompose the covariance
matrix Pt into an upper triangular matrix U , such that UUT = Pt. From

2The derivation from the original UKF formulation is straight-forward, exploiting lin-
earity and the upper triangular form of U whenever possible.
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this, compute the set of 2nN +1 sigma points σi, where n
N is the number of

demand parameters of the non-linear part of the choice function:

σ0 = x̂t (8)

σi = x̂t +
√
n+ γ Ui i = 1, . . . , nN (9)

σi = x̂t −
√
n+ γ Ui−nN i = nN + 1, . . . , 2nN (10)

where Ui is the i-th column of U , n is the number of demand parameters for
the complete choice function and γ is the Lambda-parameter from Julier and
Uhlmann (1997), renamed here to avoid confusion with the demand volume
parameter.

Next, apply the non-linear part of the choice function to each sigma point
to obtain

gi = Ca(σi) i = 0, . . . , 2nN (11)

From this, compute the expected bookings from the non-linear part zN , the
linear part zL and their sum z:

zN =
γ + nL

γ + n
· g0 +

1

2(n+ γ)
·
2nN
∑

i=1

gi (12)

zL = Lax̂
L
t (13)

z = zL + zN (14)

Additionally, find the booking covariance matrix from the non-linear part

PzNzN =

(

γ + nL

γ + n
+ (1− α2 + β)

)

· (g0 − zN)(g0 − zN)T

+
1

2(n+ γ)
·
2nN
∑

i=1

(gi − zN)(gi − zN)T
(15)

and the cross-covariance between the complete state xt and the non-linear
bookings zN

PxzN =
1

2(n+ γ)
·
2nN
∑

i=1

(σi − x̂t)(gi − zN)T . (16)
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Based on this, and the upper left nL × nL block of Pt P
L, compute the

total booking covariance

Pzz = LaP
LLT

a + PzNzN + diag(Ha(x̂t)) (17)

and with the left n×nL block of Pt P
NL, construct the total cross-covariance

Pxz = PNLLT
a + PxzN (18)

The values obtained for z, Pzz and Pxz are now used for the regular
Kalman Filter update and prediction equations. Hence, we compute the
Kalman gain K = PxzP

−1
zz and from that the new demand estimate

x̂t+1 = x̂t +K · (bt − z) (19)

Pt+1 = Pt −KPzzK
T +Q (20)

4.2 Particle Filter

The Particle Filter (PF) is a more general extension of the Kalman Filter,
in that it can handle almost any state-space model. This flexibility comes
with additional computational effort. The PF starts with a large number of
hypotheses (particles) about the real parameters and updates the likelihood
of these hypotheses as new observations arrive. The number of particles
treated makes the approach computationally more demanding. Conceptually
however, the method is very straight-forward and easy to implement.

When the number of particles tends to infinity, the Particle Filter is
asymptotically the minimum mean squared error filter and the approxi-
mated posterior density converges to the real posterior density (Gordon et al.
(1993)). However, for a finite number of particles, little can be said about
the quality of the filter; the required number of particles can only be found
experimentally. In practice, there exists a trade-off between filter quality and
the required computational resources.

Since the Particle Filter puts no restrictions on the state-space model, we
use our original formulation as follows:

xt+1 = xt + wt wt ∼ N(0, Q) (21)

bt ∼ Poi(Ha(xt)) (22)

Let N be the number of particles used. At every time step, the Particle
Filter holds a set of particles Pt = {x̂tk, k = 1, . . . , N} and a corresponding
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set of weights Wt = {ωtk, k = 1, . . . , N}. Each particle represents a potential
parameter vector for the choice function H. Its corresponding weight is the
likelihood of that parameter vector being the true parameters.

When a new set of observed bookings bt and availabilities at arrives, a
new set of particles is generated and their likelihoods are evaluated. The new
set could theoretically be drawn from a uniform distribution over the whole
parameter space. This, however, would lead to large number of particles with
very small likelihoods, and therefore excessive computational requirements.
Importance sampling puts most particles in regions of high interest. These
regions are described by a so-called importance function π(x|x0:t−1,k, b0:t),
which assigns a weight to each point in the parameter space based on the
particle’s past trajectory and the observation history. There are multiple
choices for the importance function, and most PF variants found in the lit-
erature differ primarily in this (Doucet et al. (2000)).

The general algorithm consists of the following steps.

• For i = 1, . . . , N sample x̂tk ∼ π(x|x̂0:t−1,k, b0:t).

• For i = 1, . . . , N compute importance weights:

ω′

t,k = ωt−1,k ·
pa(bt|x̂tk) · p(x̂tk|x̂t−1,k)

π(x̂tk|x̂0:t−1,k, b0:t)
(23)

• For i = 1, . . . , N normalize importance weights ωt,k =
ω′

t,k∑
ω′

t,k

.

The conditional probability pa(bt|x̂tk) is given by the Poisson probability
distribution function and the choice function H:

pat(bt|x̂tk) =
∏

i

(ha,i(x̂tk))
bt,i

bt,i!
· e(ha,i(x̂tk) (24)

The conditional probability p(x̂tk|x̂t−1,k) describes the state evolution. From
equation 21, we find that this is a multivariate Gaussian distribution with
mean x̂t−1,k and covariance Q.

Together, weights and particles form a discrete distribution approximat-
ing the actual continuous posterior distribution. The expected value for the
parameter estimate at time t can be computed as the mean of the particles
at time t, such that x̂t =

1
N

∑

ωtkx̂tk.
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As mentioned above, it is desirable to keep the particle weights as evenly
distributed as possible. This can be measured by the particle weights’ vari-
ance. It can be shown that the importance function π(x|x0:t−1,k, b0:t) =
pa(x|xt−1,k, bt) minimizes the variance of the particle weights Doucet et al.
(2000), which is therefore called the optimal importance function. In our
model, this function has no closed form such that analytical sampling from
this function is not possible. As proposed in Doucet et al. (2000), we approx-
imate the importance function locally around x by a multivariate Gaussian
distribution. We define the log-likelihood l(x) = log pa(x|xt−1, bt) and then
compute its first two derivatives:

l(x) = const.− 1

2
(x− xt−1)

TQ−1(x− xt−1)

+
∑

i:hi(x)>0

(bt,i log hi(x)− hi(x))
(25)

∇xl(x) = −Q−1(x− xt−1) +
∑

i:hi(x)>0

∇xhi(x) · (
bt,i

hi(x)
− 1) (26)

∆x
xl(x) = −Q−1

+
∑

i:hi(x)>0

(

∆x
xhi(x) · (

bt,i
hi(x)

− 1)− (∇xhi(x))(∇xhi(x))
T · bt,i

h2
i (x)

)

(27)

where ∆x
y = (∇x)(∇y)

T = ( ∂
∂x1

, . . . , ∂
∂xn

)T ( ∂
∂y1

, . . . , ∂
∂yn

).

A second order Taylor expansion yields the covariance Σ = −l′′(x)−1

and mean m = x + Σ · l′(x). The point x, around which the log-likelihood
function is approximated locally, should be the mode of pa(x|xt−1, bt), which
can be found numerically with Newton’s iterative method. Constructing
this importance function is computationally expensive when the number of
parameters becomes large, but it has the advantage of putting more weight
on areas of the parameter space that are in agreement with the current
observation.

The particle cloud for such a filter will still degenerate at some point,
as analytically proven in Doucet et al. (2000). That is, most of the particle
weight will be concentrated on a single particle. To overcome this, the par-
ticles have to be resampled from time to time. We employ the resampling
strategy presented in Doucet et al. (2000). If the estimated number of effec-
tive particles Neff = 1∑

ω2

tk

is smaller than some minimum fraction of the total
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number of particles N , the particle weights are degenerated and resampling
should be performed.

During resampling, each particle x̂′

t,k is replaced by an existing particle
x̂tr, where the index r is drawn randomly with replacement from the set
1, . . . , N with probabilities ωtk. The new weights are ω′

t,k = 1
N
. It can easily

be verified that the the particle distribution’s moments’ expectation is not
changed by this operation. Furthermore, the number of effective particles
Neff now equals the total number of particles N .

5 Evaluating Approaches to Improving De-

mand Estimation

Theoretical performance guarantees can usually only be given for restricted
problems and if the assumptions underlying the estimator actually fit the
data. At the same time, evaluation of full real-world implementations is
costly and complicated by uncertain and possibly unstable conditions. As
a consequence, we measure the performance of approaches in a simulation
system providing realistic but fully known and stable conditions. For this
purpose, as mentioned in Section 3.1, the simulation mirrors the ARM system
illustrated by Figure 1, relying on artificial demand to generate bookings. We
benchmark the results using the PCRB.

5.1 Simulation ARM Model and Experimental Set-Up

As part of an ongoing research cooperation, we were given access to the
simulation system REMATE as developed by Lufthansa German Airlines
Gerlach et al. (2010). REMATE allows for highly flexible scenario defini-
tions, such that real-world scenarios can be easily modeled. We adapted the
system for our purposes, implementing the computation of the new estima-
tion methods and the PCRB.

In the simulation, availabilities are optimized through dynamic program-
ming (DP) with fare transformation. Fare transformation transforms a de-
pendent demand model into an independent demand model so that standard
independent demand optimization procedures can be applied. The dynamic
programming approach explicitly models the stochastic and time-dependent
nature of demand and produces a so-called bid price depending on the re-
maining time before departure and the remaining number of unsold seats.
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The bid price is the minimum price for which the next seat is sold; all fare
classes with a lower price will not be available while all fare classes with a
higher price will be. See Talluri and van Ryzin (2005) for details on the DP,
and Fiig et al. (2009) for a description of fare transformation.

To simplify the analysis, we restrict ourselves to a single compartment
on a single flight. In the practice of airline revenue management, demand is
usually forecasted separately per flight leg and compartment or per origin-
destination pair and compartment. Either way, explicit consideration of
multi-leg itineraries only enters the picture during optimization, which is not
the focus of this paper. We therefore believe that the restriction to a single
compartment and flight is not a very strong one in our context. Additionally,
there are neither cancellations nor no-shows, .

Three base simulation scenarios represent domestic, continental and in-
tercontinental markets, respectively. The number of fare classes and their
prices are taken from empirical Lufthansa data for exemplary markets. Ca-
pacity is defined as 100 seats for domestic and continental flights, and as 200
seats for intercontinental flights.

For each base scenario, there exist high demand and low demand vari-
ants. In low demand variants, the capacity restriction is mostly irrelevant,
such that bid prices are zero and optimization is focused on exploiting price-
sensitivity. In high demand variants, bid prices are positive and optimization
has to exploit price-sensitivity while being constrained by limited capacity.
Each simulation includes 100 departures, to allow the estimation algorithms
to settle into a stable state. Each simulation is repeated 100 times, such that
the results are averages over 100 different demand realizations.

5.2 Simulation Demand Model

The simulation implements the so-called Hybrid Demand Model, where de-
mand is decomposed into independent demand and price-dependent demand.
While independent demand is defined per specific product, price-dependent
demand is characterized by overall volume per itinerary, compartment, point
of sale and time slice. A price elasticity parameter describes the share of
customers willing to buy at a higher price.

This model has been chosen for its simplicity: With customer behavior
summarized in a single elasticity parameter, result analysis and discussion are
easily traceable. The addition of independent demand gives the model some
flexibility to account for empirical deviations from strictly price-dependent
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behavior. A close variant of this model appears in the PODS revenue man-
agement simulator developed at MIT under the term Q-Forecasting Carrier
(2003).

Price-sensitive demand realizes exclusively in the lowest available fare
class. For that class, the expected number of bookings can be expressed as

xvolume · exp
(

−xelast(
f

fbase
− 1)

)

(28)

where xvolume and xelast are the aforementioned demand parameters, f is the
fare of the lowest available class and fbase is a reference price. Analytically,
the choice of the reference price fbase is arbitrary, as the demand parameters
xvolume and xelast can be adapted to recover the identical choice behavior
for any reference price. Setting the reference price to the lowest existing

price ensures that exp
(

−xelast(
f

fbase
− 1)

)

≤ 1 such that this quantity can

be interpreted as a sell-up probability. In fact, the term can be reinterpreted
as a willingness-to-pay distribution, from which each customer’s individual
willingness-to-pay is drawn. This choice of reference price is therefore used
for generating artificial customers.

Numerical stability considerations, on the other hand, suggest to use a
reference price that is in the middle of the overall price range. This is done
during estimation. To compare the results of the estimation methods to the
actual demand parameters, the parameters have to be converted to the same
reference price fbase. When changing the reference price fbase to f ′

base, the
new demand parameters are

x′

volume = xvolume · exp
(

−xelast(
f ′

base

fbase
− 1)

)

(29)

x′

elast = xelast ·
f ′

base

fbase
(30)

Airline industry experience shows that price elasticity will change over
the booking horizon, as price-sensitive leisure customers generally book ear-
lier than business customers, who in turn express a lower price elasticity.
We therefore model the price elasticity parameter xelast as a degree-two La-
grange polynomial in the square root of the number of days before departure.
This function has three parameters, price elasticity at the beginning of the
bookings horizon xelast360, 60 days before departure xelast60 and at departure
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xelast0.
3 At any number of days d before departure, the price elasticity is a

linear combination of the three parameters.
This functional form has been chosen for having enough degrees of free-

dom to fit the empirical data well. The parameterization of the simulation
using empirical data is described in further detail in Bartke et al. (2013).

5.3 Performance Benchmarks

To evaluate the performance of the estimation algorithms, we need bench-
marks. The Posterior Cramér-Rao Bound provides the best-case scenario in
terms of mean squared error, and optimization using the real demand param-
eters yields the optimal expected revenue. The revenue baseline is calculated
through network ARM assuming strictly independent demand. To bench-
mark the mean squared forecast error, we introduce two additional methods,
using a simple heuristic and non-linear regression, respectively, to estimate
the demand parameters.

5.3.1 Posterior Cramér-Rao Bound and Information Matrix

The PCRB provides a lower bound for the mean squared error of any es-
timator. Formally, let g(Bt) be some estimator of the demand parameters
xt operating on the booking history up to time t: Bt = {b1, . . . , bt}. Then,
under mild regularity conditions,

E[(g(Bt)− xt)(g(Bt)− xt)
T ] ≥ I−1

t (31)

where “≥” means that the difference between the matrices is a positive semi-
definite matrix. It is the Fisher information matrix and evolves according
to

It+1 = Mt+1 + (I−1
t +Q)−1 (32)

or, equivalently4,

It+1 = Mt+1 +Q−1 −Q−1(It +Q−1)−1Q−1, (33)

3The choice of 360, 60 and 0 days as “anchor points” is arbitrary, however approximately
equal spacing on the

√
t axis improves numerical stability.

4To see the equivalence, note that (A−1+B)−1 = (1+AB)−1A = B−1(B−1+A)−1A =
B−1(B−1 + A)−1(B−1 + A− B−1) = B−1 − B−1(B−1 + A)−1B−1, provided that all the
inverses exist.
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where It−1 is the Fisher information matrix from the last time step, Q is the
covariance matrix from equation 1 and Mt is the Fisher information matrix
of the observation at time t (Tichavsky et al. (1998) for the derivation). The
measurement information Mt is defined as

Mt = −E[∆xt

xt
log pat(zt|xt)] (34)

where again ∆x
y = (∇x)(∇y)

T = ( ∂
∂x1

, . . . , ∂
∂xn

)T ( ∂
∂y1

, . . . , ∂
∂yn

). Here, we as-
sume that the real xt are fixed, but unknown parameters. The expectation
in equation 34 is therefore taken over zt conditioned on xt.

Using the Poisson distribution as discussed above, the likelihood pat(zt|x)
becomes5

pat(zt|x) =
∏

i:hat,i
(x)>0

(hat,i(x))
zt

zt!
· e−hat,i

(x) (35)

which yields the following measurement information matrix:

Mt(x) = E





∑

i:hat,i
(x)>0

(∇xhat,i(x))(∇xhat,i(x))
T

hat,i(x)



 (36)

Equation 33 is a direct specialization of the equation given by Tichavsky
et al. (1998). It efficiently computes the Fisher information matrix as it
requires only one matrix inversion per iteration; Q is constant and can be
inverted once at the iteration’s start. For constant Mt, it is useful to also
compute the steady state of the information matrix evolution, that is when
It+1 = It. The steady state equation

X = Mt +Q−1 −Q−1(X +Q−1)−1Q−1 (37)

is a discrete, algebraic Riccati equation and there are efficient numerical
methods to solve such equations (Laub (1979)).

Equation 32 is computationally less attractive, but much simpler to in-
terpret intuitively: We compute the minimum variance of the last time step
I−1
t , add the additional noise introduced by the time-evolution of xreal with
the covariance Q, convert that back to an information matrix by inversion
and then add the information gained by observing at time t+ 1.

5We only include terms with hat,i(x) > 0 in the product, that is with arrival rates > 0.
If the arrival rate hat,i(x) is zero, the only possible realization is zt,i = 0 with likelihood
1. These terms can therefore be ignored.
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5.3.2 Simple Estimation

For the simple estimation approach (SE), each demand parameter is esti-
mated independently. For each parameter, we find a value that is most
consistent in least-squares sense with the current observations, holding all
other parameters constant. Combining all these individual parameter esti-
mates yields a new parameter vector which obviously “overshoots” the true
parameters, since the change in each parameter alone could explain the ob-
servation. Exponential smoothing is used to avoid the overshoot. Even with
exponential smoothing, non-linear choice functions can produce extreme es-
timates. This is avoided by using a simple outlier detection that limits the
maximum change of a parameter value between time steps.

5.3.3 Maximum Likelihood Estimation

A standard solution to this type of estimation problem is maximum like-
lihood estimation (MLE): Given the joint probability pA(B,X), find a de-
mand parameter trajectory X = (x0, . . . , xT ) that maximizes pA(B,X) for
the observed availability and booking histories A and B. From the original
state-space model in equations 2 and 3, pA(B,X) can be decomposed:

pA(B,X) = p(x0)
T
∏

t=1

pat(bt|xt) · p(xt|xt−1) (38)

Maximizing equation 38 (or its logarithm) over X is a very high dimensional
problem. As an example, in the scenarios of this simulation study, each indi-
vidual x alone has dimension 333. After 100 simulation runs, the dimension
of X will be 333 · 100 = 33, 300. Maximizing any non-trivial function over
that many parameters is a major challenge.

To make this problem more tractable, we limit the availability and book-
ing histories to a rolling history of a fixed number of observations (here 25).
Further, we assume that x remained constant within this limited observa-
tion history and that the initial x0 is known and equals the estimate from
the preceding time step, i.e. x0 = x̂t−1. The joint probability function then
becomes

pA(B, x) = p(x|x̂t−1)
T
∏

t=1

pat(bt|x) (39)
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where the term p(x|x̂t−1) is given by the multivariate normal distribution with
mean x̂t−1 and covariance matrix Q. The conditional probability pat(bt|x) is
the product of Poisson probability distribution functions with rates λi =
ha,i(x). This yields the log-likelihood

L(x) = log pA(B, x) =− 1

2
(x− x̂t−1)

TQ−1(x− x̂t−1)

+
∑

τ

∑

i,hi>0

bτi · log (hi,aτ (x))− hi,aτ (x)

+ const.

(40)

This function is maximized by finding a root of the first derivative with the
iterative Newton method. L(x) is not concave in general and therefore a
global maximum is not guaranteed. In practice, this does not seem to be an
issue, since the maximum is expected to be close to x̂t−1 which is therefore
an excellent starting value.

5.4 Forecast Initialization

In simulations, as well as in real life, forecasting methods have to be initialized
in some way. As we are mainly interested in the long-term behavior of an
estimation or forecasting method, the standard approach is to use a burn-in
phase: the simulation is executed for a number of runs until a steady state
is reached. Only after the burn-in phase are statistics collected. The initial
simulations runs are therefore “wasted” computation time, and we aim to
keep the required length of the burn-in phase to a minimum.

To accomplish this, we initialize the forecast with a given mean squared
error, by starting with the “perfect” forecast (i.e. the real demand as known
in the simulation) distorted by an error term. The solution to equation 37
from Section 5.3.1 lets us approximate the steady state PCRB I−

∞
1, which we

use as the initial mean squared forecast error. This is only an approximation
of the true steady state for two reasons. First, the actual mean squared
forecast error will be larger than the PCRB. Second, equation 37 assumes
a constant measurement information matrix Mt = M , which is available
during actual simulation. We use a weighted average of all nested availability
situations to compute an approximate M to use in equation 37.

As a result, simulations start much closer to the desired steady state.
Accordingly, a short burn-in phase of 50 simulation runs seems adequate.
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5.5 Numerical Results

This section presents the simulation results. Summarizing the previous sec-
tions, there are 3 demand volumes, 3 traffic types, 4 estimation methods and
10 independent demand realizations with 100 runs each, for a total of 360
simulations and 36000 simulation runs. Total running time was about 40
hours on a laptop computer with an Intel Core i5 2.6 GHz processor and
4GB of RAM.

We analyze performance in term of forecast quality and revenue. Fore-
cast quality is measured through the so-called estimator efficiency, which is
defined as the quotient of the PCRB and the mean squared error. Since
there is more than one parameter to be estimated, both the PCRB and the
mean squared error have the form of covariance matrices. To compute the
estimator efficiency, we use the trace (the sum of diagonal elements) of these
matrices. The closer the mean squared error gets to the PCRB, the higher
the estimator efficiency will be. Since the PCRB is an upper bound for the
mean squared error, estimator efficiency is bounded by 1 from above. Rev-
enue results are reported as a revenue gap in percent as compared to the
revenue achievable using the real demand parameters as a “perfect” forecast.

5.5.1 Forecast Quality

Figures 2, 3 and 4 show the estimator efficiency obtained in the simulation.
For each data point, the estimated mean and approximate 95% confidence in-
tervals are given.6 Figure 2 provides an aggregated overview over all demand
volumes and scenarios. SE produces a mean squared error that is orders of
magnitude higher than the PCRB and thus efficiency is close to 0. The mean
squared error of PF is about 3 times as high as the PCRB, which leads to
an estimator efficiency that is lower than that of the UKF and MLE. The
UKF is more efficient than MLE, but this result is just below the threshold
to statistical significance.

Figure 3 splits the data by demand volume. All methods suffer from a loss
of efficiency in the high demand case. That loss is least pronounced for PF,
but its mean squared error fluctuates strongly over independent simulation
runs, leading to the large size of the confidence interval.

6Here the data points are in fact ratios of two experiments. We use the R-package
pairwiseCI (Froemke et al. (2012)), which implements Ogawa (1983), to compute the
approximate confidence intervals.
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Figure 2: Estimator efficiency E = tr(PCRB)/tr(MSE), aggregated over all sce-
narios; the boxes represent the mean value and its 95% confidence interval;
SE = Simple Estimation, MLE = Maximum Likelihood Estimation, UKF =
Unscented Kalman Filter, PF = Particle Filter

A possible explanation is quality of availability information degrading as
the demand volume increases. If bid prices are zero, availability is solely
determined by fare transformation. These availabilities will thus be stable,
providing perfect availability information to the estimator. If bid-prices are
positive, availability may change each time a booking occurs and every time
the bid price vector gets updated (once per day in the simulation). The
estimators, however, are not aware of these availability changes, they only
get a rough approximation7 of the total amount of time a class was available
during a time slice.

Figure 4 splits the data by traffic type. For intercontinental traffic all
methods show reduced estimator efficiency compared to the other two sce-
narios, an effect that is statistically significant for MLE and UKF, but not
for PF. Qualitative results are the same for all three scenarios, only MLE
has a slightly, but not significantly, higher estimator efficiency than UKF in
the “Domestic” scenario.
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Figure 3: Estimator efficiency E = tr(PCRB)/tr(MSE) by demand volume; the
boxes represent the mean value and its 95% confidence interval; SE = Simple
Estimation, MLE = Maximum Likelihood Estimation, UKF = Unscented
Kalman Filter, PF = Particle Filter

5.5.2 Revenue

Figures 5 through 7 show the relative gap in revenue of each estimation
method compared to the revenue obtained given a “perfect” forecast. Figure
5 displays the aggregated data over all traffic types and demand volumes,
while figures 6 and 7 provide more detail by splitting the data by demand
volume and traffic type, respectively. Again, for each data point the mean
and its 95% confidence interval are shown.

SE yields significantly less revenue than all other methods. In the ag-
gregate over all scenarios, MLE achieves the highest revenues, with only a
slight gap (≈ 0.25%) compared to the upper bound. UKF and PF are close
to the MLE, however the gaps are comparatively almost twice (≈ 0.4%) and
ten times (≈ 2.2%) as high. Considering the 95% confidence intervals, the
distinction between the UKF and the MLE is not statistically significant.

The more detailed views in figures 6 and 7 confirm that the qualitative
results are the same over all demand volumes and traffic types. This suggests
that our results and conclusions are robust under various perturbations of
the scenario parameters.

7based on a linear interpolation of the bid prices at the beginning and the end of a
time slice
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Figure 4: Estimator efficiency E = tr(PCRB)/tr(MSE) by traffic type; the boxes
represent the mean value and its 95% confidence interval; SE = Simple
Estimation, MLE = Maximum Likelihood Estimation, UKF = Unscented
Kalman Filter, PF = Particle Filter

6 Conclusion

Based on a control-theory view of airline revenue management, this paper
formulated the ARM process as a state-space model. We employed this
model to adapt and apply two Filter techniques, Unscented Kalman Filter
and Particle Filter, to create new demand estimates. In the previous section,
these estimates were evaluated against the PCRB and alternative estimates.
In this final section, we further discuss the results and provide an outlook to
future research in this direction.

6.1 Discussion of Results

The results presented in Section 5 unambiguously show that SE is clearly
inferior to its alternatives, both in terms of forecast error and revenue perfor-
mance. From a practitioner’s standpoint, the large revenue gap is especially
troublesome. Note, however, that the size of this gap is partially due to the
scenario setup emphasizing the role of price-sensitivity.

MLE, on the other hand, has a slight advantage in both metrics over all
other methods. We suspect that this is due to the relatively slow demand
evolution found in the data used to calibrate the scenarios. Since MLE par-
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Figure 5: Revenue gap in percent compared to revenue given a perfect fore-
cast, aggregated over all scenarios; the boxes represent the mean value and its
95% confidence interval; SE = Simple Estimation, MLE = Maximum Likeli-
hood Estimation, UKF = Unscented Kalman Filter, PF = Particle Filter

tially assumes constant demand, its performance should degrade compared
to the Filter estimates when demand changes faster.

Among the Filter estimates, UKF performs notably better than PF. In-
creasing the number of particles used might change this result. However, with
the given settings, PF computation time already exceeded that of UKF by a
factor of about two. In real-world implementations, computation time would
certainly be a concern, so significantly increasing the number of particles
does not appear as a realistic option.

Vulcano et al. (2009)) estimate that the revenue gain from using choice-
based revenue management and MLE is between 1% and 5%. In our sim-
ulation study, we can see that using a simple, ad-hoc estimation method
can easily negate that potential, especially when the airline moves towards a
restriction-less fare structure. Carefully designed estimation methods on the
other hand can perform close enough to the optimum that a positive revenue
effect from choice-based revenue management still exists.

6.2 Research Outlook

Our particular demand model is quite restrictive and was mostly chosen for
illustrative purposes. However, we believe that our approach of modeling
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Figure 6: Revenue loss in percent compared to revenue under a perfect fore-
cast, by demand volume; the boxes represent the mean value and its 95%
confidence interval; SE = Simple Estimation, MLE = Maximum Likelihood
Estimation, UKF = Unscented Kalman Filter, PF = Particle Filter

the demand estimation problem in a state-space framework offers a path to
quickly develop high quality estimation methods for any given demand model.
There exists a large body of literature on many variants of the state-space
estimation problem, in many cases with a strong focus on practical applica-
bility. Once the state-space formulation exists, it is a matter of searching the
literature for suitable methods and adapting them accordingly. Therefore,
other extensions of our model, e.g. away from the Poisson distribution or the
simple AR(1) model, seem also within reach.

Making use of the additional information provided by the covariance of
the estimates is another interesting topic for future research. Here, we focus
our attention on using covariance information to improve forecast quality
when the total number of sales from which demand has to be estimated is
small. In real-world implementations, it is a natural choice to consider origin-
destination pairs as distinct markets for which separate demand parameters
are estimated. However, in a typical airline’s network, the distribution of
sales over these origin-destination pairs is highly non-uniform, with a small
number of these markets concentrating most of the sales. In turn, for the
majority of markets only a very small number of bookings will be observed
in a given time-period, rendering high-quality demand estimation at this
level impossible. The availability of covariance information helps to identify
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Figure 7: Revenue loss in percent compared to revenue under a perfect fore-
cast, by traffic type; the boxes represent the mean value and its 95% con-
fidence interval; SE = Simple Estimation, MLE = Maximum Likelihood
Estimation, UKF = Unscented Kalman Filter, PF = Particle Filter

those problematic markets and we are currently investigating a clustering
procedure in which demand estimates from multiple markets are merged
using a variance-weighted mean.
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