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and

λ̂sk := λ̂s + λ̂k

d
→χ2(2K). (4.5.18)

Thus, all three statistics may be used for testing nonnormality.
As we have seen, the results hold for any matrix satisfying P̂ P̂ ′ = Σ̂u. For

example, P̂ may be a lower triangular matrix with positive diagonal obtained
by a Choleski decomposition of Σ̂u. Clearly, in this case P̂ is a consistent
estimator of the corresponding matrix P (see Proposition 3.6). Doornik &
Hansen (1994) point out that with this choice the test results will depend on
the ordering of the variables. Therefore they suggest using a matrix based
on the square root of the correlation matrix corresponding to Σ̂u instead. In
any case, the matrix P̂ is not unique and, hence, the tests will depend to
some extent on its choice. Strictly speaking, if one particular P̂ is found for
which the null hypothesis can be rejected, this result provides evidence against
the normality of the process. Thus, different P̂ matrices could be applied in
principle.

For illustrative purposes we consider our standard investment/income/con-
sumption example from Section 3.2.3. Using the least squares residuals from
the VAR(2) model with intercepts and a Choleski decomposition of Σ̂u yields

λ̂s = 4.26 and λ̂k = 17.70

which may be compared to χ2(3).95 = 7.81, the critical value of an asymptotic
5% level test. Also

λ̂sk = 21.96 > χ2(6).95 = 12.59.

Thus, based on these asymptotic tests we reject the null hypothesis of a Gaus-
sian data generation process.

It was pointed out by Kilian & Demiroglu (2000) that the small sample dis-
tributions of the test statistics may differ substantially from their asymptotic
approximations. Thus, the tests may not be very reliable in practice. Kilian
& Demiroglu (2000) proposed bootstrap versions to alleviate the problem.

4.6 Tests for Structural Change

Time invariance or stationarity of the data generation process is an important
condition that was used in deriving the properties of estimators and in com-
puting forecasts and forecast intervals. Recall that stationarity is a property
that ensures constant means, variances, and autocovariances of the process
through time. As we have seen in the investment/income/consumption exam-
ple, economic time series often have characteristics that do not conform with
the assumption of stationarity of the underlying data generation process. For
instance, economic time series often have trends or pronounced seasonal com-
ponents and time varying variances. While these components can sometimes


