$$
\begin{align*}
& \boldsymbol{\Gamma}(z):=I_{K}-\sum_{i=1}^{p-1} \boldsymbol{\Gamma}_{i} z^{i} \\
& B_{*}(z):=Q\left[\boldsymbol{\Gamma}(z) \overline{\boldsymbol{\beta}}(1-z)-\alpha z: \boldsymbol{\Gamma}(z) \boldsymbol{\beta}_{\perp}\right] \\
& B(z)=I_{K}-\sum_{i=1}^{p} B_{i} z^{i}:=Q^{-1} B_{*}(z) Q \tag{6.3.13}
\end{align*}
$$

and

$$
\boldsymbol{\Theta}(z):=B(z)^{-1}=\sum_{j=0}^{\infty} \boldsymbol{\Theta}_{j} z^{j}
$$

Notice that $B(0)=Q^{-1} B_{*}(0) Q=\left[\bar{\beta}: \beta_{\perp}\right] Q=I_{K}$. Hence, $B(z)$ has the representation $I_{K}-\sum_{i=1}^{p} B_{i} z^{i}$ stated in (6.3.13). Moreover, the matrix operator $\boldsymbol{\Theta}(z)$ can be decomposed as

$$
\boldsymbol{\Theta}(z)=\boldsymbol{\Theta}(1)+(1-z) \boldsymbol{\Theta}^{*}(z)
$$

where expressions for the $\boldsymbol{\Theta}_{j}^{*}$'s can be found by comparing coefficients in $\boldsymbol{\Theta}(z)=\sum_{j=0}^{\infty} \boldsymbol{\Theta}_{j} z^{j}$ and

$$
\begin{aligned}
\boldsymbol{\Theta}(1)+(1-z) \boldsymbol{\Theta}^{*}(z) & =\boldsymbol{\Theta}(1)+\sum_{j=0}^{\infty} \boldsymbol{\Theta}_{j}^{*} z^{j}(1-z) \\
& =\left(\boldsymbol{\Theta}(1)+\mathbf{\Theta}_{0}^{*}\right)+\sum_{j=1}^{\infty}\left(\mathbf{\Theta}_{j}^{*}-\mathbf{\Theta}_{j-1}^{*}\right) z^{j}
\end{aligned}
$$

Hence,

$$
\boldsymbol{\Theta}_{0}=\boldsymbol{\Theta}(1)+\mathbf{\Theta}_{0}^{*}
$$

and

$$
\boldsymbol{\Theta}_{i}=\boldsymbol{\Theta}_{i}^{*}-\boldsymbol{\Theta}_{i-1}^{*}, \quad i=1,2, \ldots
$$

Using the last expression, we get by successive substitution,

$$
\begin{align*}
\boldsymbol{\Theta}_{i}^{*} & =\boldsymbol{\Theta}_{i}+\mathbf{\Theta}_{i-1}^{*}=\sum_{j=1}^{i} \boldsymbol{\Theta}_{i-j}+\mathbf{\Theta}_{0}^{*} \\
& =\sum_{j=1}^{i} \boldsymbol{\Theta}_{i-j}+\boldsymbol{\Theta}_{0}-\boldsymbol{\Theta}(1)=-\sum_{j=i+1}^{\infty} \boldsymbol{\Theta}_{j}, \quad i=1,2, \ldots \tag{6.3.14}
\end{align*}
$$

From these quantities the operator $\boldsymbol{\Xi}^{*}(z)$ in (6.3.11) can be obtained as

$$
\begin{equation*}
\boldsymbol{\Xi}^{*}(z)=\left[\boldsymbol{\beta}_{\perp} \overline{\boldsymbol{\beta}}_{\perp}^{\prime} \boldsymbol{\Theta}^{*}(z)+\bar{\beta} \beta^{\prime} B(z)^{-1}\right] \tag{6.3.15}
\end{equation*}
$$

(see the proof of Proposition 6.1). The representation (6.3.11) will turn out to be useful, for example, in Chapter 9, where structural VECMs are discussed. The coefficient matrices $\boldsymbol{\Xi}_{j}^{*}$ of the operator $\boldsymbol{\Xi}^{*}(z)$ will then play an important role as specific impulse response coefficients.

