and

$$
v_{1}, \ldots, v_{K} \text { are the corresponding orthonormal eigenvectors. }
$$

The log-likelihood function in (7.2.19) is maximized for

$$
\begin{aligned}
\beta^{\prime} & =\widetilde{\beta}^{\prime}:=\left[v_{1}, \ldots, v_{r}\right]^{\prime} S_{11}^{-1 / 2} \\
\alpha & =\widetilde{\alpha}:=\Delta Y M Y_{-1}^{\prime} \widetilde{\beta}\left(\widetilde{\beta}^{\prime} Y_{-1} M Y_{-1}^{\prime} \widetilde{\beta}\right)^{-1}=S_{01} \widetilde{\beta}\left(\widetilde{\beta}^{\prime} S_{11} \widetilde{\beta}\right)^{-1} \\
\Gamma & =\widetilde{\Gamma}:=\left(\Delta Y-\widetilde{\alpha} \widetilde{\beta}^{\prime} Y_{-1}\right) \Delta X^{\prime}\left(\Delta X \Delta X^{\prime}\right)^{-1} \\
\Sigma_{u} & =\widetilde{\Sigma}_{u}:=\left(\Delta Y-\widetilde{\alpha} \widetilde{\beta}^{\prime} Y_{-1}-\widetilde{\Gamma} \Delta X\right)\left(\Delta Y-\widetilde{\alpha} \widetilde{\beta}^{\prime} Y_{-1}-\widetilde{\Gamma} \Delta X\right)^{\prime} / T
\end{aligned}
$$

The maximum is

$$
\begin{equation*}
\max \ln l=-\frac{K T}{2} \ln 2 \pi-\frac{T}{2}\left[\ln \left|S_{00}\right|+\sum_{i=1}^{r} \ln \left(1-\lambda_{i}\right)\right]-\frac{K T}{2} \tag{7.2.20}
\end{equation*}
$$

Proof: From Chapter 3, Section 3.4, it is known that for any fixed α and β the maximum of $\ln l$ is attained for

$$
\widetilde{\Gamma}\left(\alpha \beta^{\prime}\right)=\left(\Delta Y-\alpha \beta^{\prime} Y_{-1}\right) \Delta X^{\prime}\left(\Delta X \Delta X^{\prime}\right)^{-1}
$$

Thus, we replace $\boldsymbol{\Gamma}$ in (7.2.19) by $\widetilde{\boldsymbol{\Gamma}}\left(\alpha \beta^{\prime}\right)$ and get the concentrated loglikelihood

$$
\begin{aligned}
- & \frac{K T}{2} \ln 2 \pi-\frac{T}{2} \ln \left|\Sigma_{u}\right| \\
& -\frac{1}{2} \operatorname{tr}\left[\left(\Delta Y M-\alpha \beta^{\prime} Y_{-1} M\right)^{\prime} \Sigma_{u}^{-1}\left(\Delta Y M-\alpha \beta^{\prime} Y_{-1} M\right)\right]
\end{aligned}
$$

Hence, we just have to maximize this expression with respect to α, β, and Σ_{u}. We also know from Chapter 3 that, for given α and β, the maximum is attained if

$$
\widetilde{\Sigma}\left(\alpha \beta^{\prime}\right)=\left(\Delta Y M-\alpha \beta^{\prime} Y_{-1} M\right)\left(\Delta Y M-\alpha \beta^{\prime} Y_{-1} M\right)^{\prime} / T
$$

is substituted for Σ_{u}. Consequently, we have to maximize

$$
-\frac{T}{2} \ln \left|\left(\Delta Y M-\alpha \beta^{\prime} Y_{-1} M\right)\left(\Delta Y M-\alpha \beta^{\prime} Y_{-1} M\right)^{\prime} / T\right|
$$

or, equivalently, minimize the determinant with respect to α and β. Thus, all results of Proposition 7.3 follow from Proposition A. 7 of Appendix A. 14.

The solutions $\widetilde{\beta}$ and $\widetilde{\alpha}$ of the optimization problem given in the proposition are not unique because, for any nonsingular $(r \times r)$ matrix $Q, \widetilde{\alpha} Q^{-1}$

