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1 Introduction

In vector error correction models (VECMs), the Johansen (1995) reduced rank (RR) maxi-

mum likelihood (ML) approach is by now the dominant method for estimating the cointegra-

tion parameters. Reasons for its popularity are its sound theoretical basis, its computational

simplicity and its superior performance relative to some other estimators. Stock & Watson

(1993), Hargreaves (1994), Gonzalo (1994) and Caporale & Pittis (2004) for example, found

a better small sample performance of the ML estimator (MLE) than of some other estima-

tors. For instance, in Gonzalo’s study a Monte Carlo comparison was conducted and the

MLE was found to be the best choice at least when the median and the interquartile range

are used as evaluation criteria. Gonzalo (1994) also mentions that the mean squared error

may be a problematic criterion for estimator comparison in this case because finite sample

moments of the estimator do not exist (see Phillips (1994)). There is, in fact, also some

recent evidence, that the small sample properties of the ML estimator are not well approx-

imated by its asymptotic distribution and, in particular, that the ML estimator produces

occasional outliers which are far away from the true parameter values (see Phillips (1994, p.

74) for further references and Hansen, Kim & Mittnik (1998) for related results). Moreover,

Gredenhoff & Jacobson (2001) investigated the small sample properties of the likelihood ra-

tio (LR) test for restrictions on the cointegrating parameters and found that its asymptotic

χ2 distribution is a poor guide for small sample inference.

In this study we will consider a small German monetary system and demonstrate that

the problem is not only an academic one but can arise in a standard empirical setting. In

other words, if the MLE is used in applied work and implausible cointegration parameters

are found, this can well be a reflection of the potentially poor small sample performance of

this estimator. It is not necessarily a consequence of a deficient model setup.

We will compare the MLE to a simple feasible two-step generalized least squares (GLS)

estimator which was considered by Ahn & Reinsel (1990) and Saikkonen (1992) (see also

Reinsel (1993, Chapter 6) and Phillips (1994) for a closely related estimator) and we show

that it does not produce the kind of outlying estimates observed for the MLE. It has not

attracted much attention from applied researchers in the past possibly because it is not

implemented in some standard econometric software packages. We will show, however, that

in some respects it has substantially better small sample properties than the MLE.

The paper is structured as follows. In the next section the model setup is presented

and the estimators are briefly introduced in Section 3. A small quarterly German monetary
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system is considered in Section 4 which illustrates the undesirable properties of the MLE. A

Monte Carlo comparison of the MLE and the GLS estimator is presented in Section 5 and

conclusions are drawn in Section 6.

2 The Model

It is assumed that the K-dimensional process yt has the VECM representation

∆yt = α(β′yt−1 + δco′dco
t−1) + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + Cds

t + ut

= αβ∗
′
y∗t−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + Cds

t + ut,
(2.1)

where α and β are (K×r) matrices of rank r associated with the long-run part of the model,

Γi (i = 1, . . . , p − 1) are (K × K) coefficient matrices associated with the short-run part.

Moreover, dco
t is a vector of deterministic variables which are included in the cointegration

relations. The corresponding coefficient matrix is denoted by δco′ . The vector ds
t includes

the remaining deterministic variables with coefficient matrix C. The matrix β∗
′
= [β′ : δco′ ]

is (r × K∗) and y∗
′

t−1 = [y′t−1, d
co′
t−1] is (K∗ × 1) with K∗ = K+ dimension(dco

t ). The error

term ut consists of a white noise process with zero mean and nonsingular covariance matrix

Σu. All variables are assumed to be integrated of at most order 1.

We are interested in estimating the parameters β∗. Because the matrix is not unique

we will impose just-identifying restrictions such that β∗
′
= [Ir : β∗

′
(K∗−r)], that is, the first r

rows of β∗ constitute an (r × r) identity matrix. This form of the cointegration matrix can

always be obtained by a suitable ordering of the variables. In practice, if the cointegration

properties of all variables and subsets of variables are known, it is not difficult to set up the

system properly. In case of doubt, there is also a possibility to perform a statistical test of

the right ordering of the variables (Luukkonen, Ripatti & Saikkonen (1999)).

3 The Estimators

3.1 Reduced Rank ML Estimation

For a given cointegrating rank r and lag order p, a sample with T observations and p

presample values, ML estimation of the VECM (2.1) can be done by RR regression, as

shown in Johansen (1995). The estimator may be determined by denoting the residuals from

regressing ∆yt and y∗t−1 on ∆Y ′
t−1 = [∆y′t−1, . . . , ∆y′t−p+1, d

s′
t ] by R0t and R1t, respectively,
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defining Sij = T−1
∑T

t=1 RitR
′
jt (i, j = 0, 1), and solving the generalized eigenvalue problem

det(λS11 − S10S
−1
00 S01) = 0. (3.1)

Let the ordered eigenvalues be λ1 ≥ · · · ≥ λK∗ with corresponding matrix of eigenvectors

B = [b1, . . . , bK∗ ] satisfying λiS11bi = S ′01S
−1
00 S01bi and normalized such that B′S11B = IK∗ .

An estimator of β∗ is given by β̃∗ = [b1, . . . , br]. Post-multiplying by the inverse of the first

r rows of β̃∗ gives an MLE

β̃∗
′

ML = [Ir : β̃∗
′

(K∗−r)]. (3.2)

Its asymptotic properties can be recovered from the convergence result (e.g., Johansen (1995),

Reinsel (1993, Chapter 6))

vec

{
(β̃∗

′
(K∗−r) − β∗

′
(K∗−r))

(
R

(2)
1 R

(2)′
1

)1/2
}

=

[(
R

(2)
1 R

(2)′
1

)1/2

⊗ IK∗−r

]
vec(β̃∗

′
(K∗−r) − β∗

′
(K∗−r))

d→ N(0, IK∗−r ⊗ (α′Σ−1
u α)−1),

(3.3)

where R
(2)
1 = [R

(2)
11 , . . . , R

(2)
1T ] and R

(2)
1t contains the last K∗ − r components of R1t. This

result implies that LR or Wald tests for restrictions on the parameters β∗(K∗−r) have standard

asymptotic χ2 distributions under the null hypothesis.

3.2 A Feasible GLS Estimator

Ahn & Reinsel (1990) and Saikkonen (1992) proposed another estimator for the cointegration

parameters which can be viewed as a feasible GLS estimator. To focus on the cointegration

parameters, we consider the concentrated model corresponding to the VECM (2.1),

R0t = αβ∗
′
R1t + ũt. (3.4)

Using the normalization β∗
′
= [Ir : β∗

′
(K∗−r)], this model can be written in the form

R0t − αR
(1)
1t = αβ∗

′
(K∗−r)R

(2)
1t + ũt = (R

(2)
1t

′ ⊗ α)vec(β∗
′

(K∗−r)) + ũt, (3.5)

where R
(1)
1t and R

(2)
1t consist of the first r and last K∗ − r components of R1t, respectively.

For a given α, the GLS estimator of vec(β∗
′

(K∗−r)) is

vec(β̆∗
′

(K∗−r)) =




(∑
t

R
(2)
1t R

(2)
1t

′
)−1

⊗ (α′Σ−1
u α)−1


 ∑

t

(R
(2)
1t ⊗ α′Σ−1

u )(R0t − αR
(1)
1t )
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and, thus,

β̆∗
′

(K∗−r) = (α′Σ−1
u α)−1α′Σ−1

u

(∑
t

(R0t − αR
(1)
1t )R

(2)
1t

′
)(∑

t

R
(2)
1t R

(2)
1t

′
)−1

. (3.6)

Hence, β∗
′

(K∗−r) can be estimated by a two-step procedure. In the first step, the parameters

in the model R0t = ΠR1t + ũt are estimated by ordinary least squares (OLS). We denote the

OLS estimator of Π by Π̂. The first r columns of Π are equal to α and hence these columns

from the estimator Π̂ are used as an estimator α̂ of α. This estimator and the usual residual

covariance estimator are then used in (3.6) to obtain a feasible GLS estimator which will be

denoted by β̆∗(K∗−r)GLS and

β̆∗
′

GLS = [Ir : β̆∗
′

(K∗−r)GLS].

This two-step estimator has the same asymptotic distribution as the MLE (see Ahn & Reinsel

(1990), Reinsel (1993, Chapter 6), Saikkonen (1992)). The small sample properties of the

two estimators are quite different, however, as we will see in the next two sections.

There are also other system methods for estimating the cointegrating parameters. For

example, Phillips (1991) considered nonparametric estimation of the short-run parameters,

Stock & Watson (1988) discussed an estimator based on principal components, Bossaerts

(1988) used canonical correlations and Stock & Watson (1993) proposed dynamic OLS and

GLS estimators of the cointegration parameters. The latter one of these estimators uses leads

and lags of differenced variables to account for short-run dynamics. Stock and Watson’s

principal components and Bossaerts’ canonical correlations estimators were shown to be

inferior to Johansen’s ML method in the comparison by Gonzalo (1994). Moreover, Stock

& Watson (1993) found in their simulation study that the dynamic OLS estimator tends

to be inferior to the dynamic GLS estimator which in turn was inferior in some respects

to Johansen’s ML estimator. The dynamic GLS estimator also performed quite poorly in

the simple bivariate setup of Caporale & Pittis (2004).2 In the latter study it is also found

that the MLE outperforms many of the standard single equation estimators. Therefore we

do not consider other estimators here but focus on a comparison between the MLE and the

feasible GLS estimators proposed in the foregoing. Nonparametric estimation of the short-

run parameters is not treated because we are interested in the properties of the MLE under

ideal conditions, which includes knowledge of the autoregressive order and, hence, using a

2Note that this estimator corresponds to the dynamic OLS estimator of Caporale & Pittis (2004) in their

single equation context.
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parametric model is more plausible here. In the next section we consider an example model

which illustrates some important properties of the ML and GLS estimators.

4 A German Monetary System

We have estimated a small textbook-style monetary system for quarterly German data over

the period 1975Q1-1998Q4 using both the ML and GLS estimators. Our model includes the

log of real money M3, m, the log of real gross national product, gnp, and an average bond

rate as a long-term interest rate, R.3 A detailed description of the data and a preliminary

analysis including time series plots as well as unit root and cointegration tests are given in

Lütkepohl (2004). All series in yt = (mt, gnpt, Rt)
′ appear to be I(1). Cointegration tests

point to one cointegration relation (r = 1). Using a VECM with r = 1, four lags of ∆yt,

seasonal dummies, an impulse dummy for modelling the effects of German reunification, a

constant and a deterministic trend, which is restricted to lie in the cointegration space, the

MLE of β∗
′
is given by

β̃∗
′

ML = (1, −0.863

(0.228)

, 3.781

(0.801)

, −0.002

(0.002)

),

whereas using the GLS estimator yields

β̆∗
′

GLS = (1, −1.003

(0.148)

, 1.819

(0.519)

, −0.002

(0.001)

).

Here estimated standard errors are given in parentheses. Both estimates allow to interpret

the cointegration vector as a money demand function. For instance, using the ML results,

the estimated money demand equation can be written as

mt = 0.863

(0.228)

gnpt − 3.781

(0.801)

Rt + 0.002

(0.002)

t + ect.

Thus, the income elasticity is not far from the theoretically plausible value of 1 and the

interest rate coefficient is negative. Hence, Rt can be interpreted as an opportunity cost

variable.

Although there are some differences for the point estimates, we get a more informative

picture by looking at the implied confidence intervals. For this purpose, we have computed

3The data are available at http://www.jmulti.de/download/datasets/GermanMonetarySystem.dat.
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asymptotic 95% confidence intervals around the estimates of β∗(K∗−r). Moreover, we pro-

vide results for different sample periods. To be more precise, we truncated t∗ = 1, . . . , 50

observations at the beginning of the sample and for each t∗ we computed the confidence

intervals for the ML and GLS estimators. A graphical representation of these intervals is

given in Figure 1. For most sample periods the two estimators lead to overlapping, similar

confidence intervals. Note, however, that the reduced rank ML estimator produces rather

extreme estimates and intervals for some of the samples considered. For example, using data

from 1979Q2-1998Q4 (T = 74) the ML and GLS estimators lead to completely different

results:

β̃∗
′

ML = (1, −14.04

(3.54)

, 64.91

(13.16)

, 0.125

(0.032)

),

and

β̆∗
′

GLS = (1, −0.563

(0.248)

, 0.213

(0.922)

, −0.006

(0.002)

).

Clearly, the ML income elasticity estimate of 14.04 does not make sense anymore. Although

the GLS estimate of the income elasticity also has changed markedly relative to the estimate

for the full sample period, the 95% GLS interval for the negative income elasticity still

includes the theoretically plausible value of −1. The same is obviously not true for the ML

interval. In Figure 1 this is reflected by a large ‘spike’. The behavior of the MLE seems to

be governed by a few observations in the sample. Adding or truncating a few observations

shows that ML and GLS lead again to similar point and interval estimates.

Our example illustrates the theoretical property of the MLE to produce occasional outliers

in finite samples (see Phillips (1994)). Clearly, it is somewhat worrying that estimating the

model by the MLE gives a completely misleading picture of the cointegration relation and

may, in fact, lead to the conclusion that the model is useless. Notice, however, that a set of

standard diagnostic tests for the VECM residuals does not point to misspecification of this

model. Thus, a statistically sound model is obtained with estimated parameter values which

are totally implausible from an economic point of view. Hence, using the ML estimator may

be quite misleading in practice. In our example, the simple GLS estimator proves to be a

more robust alternative as it does not produce the outliers of the MLE. Of course, this result

for our example may be a very special case for a specific data set. To show that it has more

general significance we present an illustrative Monte Carlo comparison of the two estimators

in the next section.
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Figure 1: Confidence intervals based on reduced rank ML (- - -) and GLS (· · · ) estimator
for German monetary system. The horizontal axis shows number of truncated observations
at the beginning of the sample (relative to 1975Q1). Panels are for β∗21 (top), β∗31 (middle),
and β∗41 (bottom).

7



5 Monte Carlo Comparison

We present the Monte Carlo design in Section 5.1 and the evaluation criteria that form the

basis for our comparison are discussed in Section 5.2. The main results are summarized in

Section 5.3.

5.1 Monte Carlo Design

Our Monte Carlo experiments are designed to compare different aspects of estimation pre-

cision of the two systems estimators. We base the simulations on data generating processes

(DGPs) obtained from empirical models on the one hand and on DGPs that have been pre-

viously used in comparative studies on the other hand. Using empirical model specifications

leads to DGP characteristics similar to those encountered in applied time series analysis

with a typical number of variables, number of lags and number of cointegration vectors. The

results for these DGPs are supplemented by simulations for a simple bivariate DGP used

by Gonzalo (1994) which, in principle, allows to vary some key characteristics. The main

features of the DGPs are summarized in Table 1.

DGP (A) is based on our empirical example from Section 4. For our simulation the

cointegration vector β∗ is chosen to closely resemble the ML estimates for β∗ based on the

full sample period 1975Q1-1998Q4, when the coefficient for m is normalized to one and a

unit income elasticity is imposed. The remaining DGP parameters (including a constant

and seasonal dummies) are then obtained by estimating a VECM with four lags of ∆yt for

given β. In DGP (A) the coefficient of m is normalized to 1. Consequently, we base the

comparison on the remaining parameters, which have the true values β∗21 = −1, β∗31 = 4

and β∗41 = −0.0015. Using these parameters and the first 5 data observations as presample

values, sets of time series are generated such that T = 91 observations are available for

estimation (as in the original study).

DGP (B) in Table 1 is based on the empirical model for the log of consumption c, the log

of investment i and the log of private output y specified by King et al. (1991). The balanced-

growth conditions imply two cointegration relations in the three-dimensional system. The

cointegration analysis in King et al. (1991) shows that estimates for β31 and β32 are very

close to −1. Therefore, we have imposed β31 = β32 = −1 for the simulations. The remaining

parameters are obtained by estimating a VECM with five lags of ∆yt and an unrestricted

constant. Sets of Monte Carlo time series are generated using the observed presample values

as starting values. In addition to the original number of observations (T = 160), we also use
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Table 1: DGP Properties

K r p Reference

DGP (A) 3 1 5
y∗′t = (mt, gnpt, Rt, t)
β∗′ = (1,−1, 4,−.0015)

Lütkepohl (2004)

DGP (B) 3 2 6 y′t = (ct, it, yt), β′ =
(

1 0 −1
0 1 −1

)
King et al. (1991)

DGP (C) 2 1 1 y′t = (y1t, y2t), β′ =
(

1 −1
)

Gonzalo (1994)
Note: The remaining VECM parameters for DGP (A) and (B) are obtained by esti-
mating a VECM with p− 1 lags of ∆yt for given β∗ and β using the data provided by
Lütkepohl (2004) and King, Plosser, Stock & Watson (1991). The remaining parame-
ters for DGP (C) are given in Table 4 in Gonzalo (1994).

time series of length T = 80 to investigate the small sample properties of the estimators.

The results for the empirical DGPs are supplemented by using the simple bivariate DGP

(C) that has previously been used by Gonzalo (1994) to compare different estimators for

cointegration relations. The comparison will be based on the parameter β21, which has a

true value of −1. We generate sets of time series, such that T = 30, 50, 100, 300 observations

are available for estimation.

For each design point in our Monte Carlo experiment we have generated M = 1000 sets of

time series and applied the ML and GLS estimators to obtain estimates of the cointegration

vectors. Due to the normalization of the cointegration vectors the comparison is based on

β∗(K∗−r) or the corresponding matrix without parameters of deterministic terms, β(K−r).

5.2 Evaluation Criteria

We compare the precision of the estimators on the basis of various criteria including standard

measures such as the mean bias and the mean squared error (MSE). As pointed out already,

the finite sample moments of the MLE do not exist and therefore, basing the comparison

on these moments may be ‘very unfair’ (see Gonzalo (1994)). Therefore, our criteria include

other characteristics of the empirical distribution of estimators. To account for the effects of

possible outliers we include the median bias and the sample dispersion is measured by the

interquartile range IQR50 = |q75 − q25| (qi is the i-th quantile of the empirical distribution).

The small and finite sample properties of t- and Wald tests and of the implied confidence

intervals for the parameters in β∗(K∗−r) or β(K−r) are also analyzed. We evaluate the empirical

relative rejection frequencies (sizes) of t-tests for the hypotheses that the parameters in

β∗(K∗−r) or β(K−r) are equal to the true values in Table 1. The null hypotheses of our Wald

tests state that all parameters in β∗(K∗−r) or β(K−r) equal their true parameters. For DGP
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(B), for instance, the Wald test null hypothesis is H0 : β31 = β32 = −1.

5.3 Monte Carlo Results

Some of our Monte Carlo results are summarized in Table 2. The results shown are obtained

by applying the two multivariate estimation methods to the generated Monte Carlo time

series using a correctly specified model. In other words, the results have been obtained using

the correct (‘true’) specification for lag length, cointegration rank and deterministic terms.

The results for DGP (A) can be summarized as follows. For two of the three parameters,

the mean bias of the MLE is larger than that of the GLS estimator. In terms of the MSE

the MLE is clearly dominated by the GLS estimator with impressively large MSEs of the

Johansen estimator. These results are due to some extreme outliers produced by the MLE

(see also the illustration in Section 4). In fact, computing a 1% trimmed mean bias (not

shown) the biases of both estimators turn out to be quite similar. Comparing the median

biases reveals that the GLS estimator is dominated by the MLE under this criterion. In

contrast, the IQR50 is smaller for the GLS estimator, indicating a smaller sample dispersion.

Thus, there appears to be a trade-off between bias and variance. The properties of t- and

Wald tests are clearly not satisfactory for either estimation method. For instance, the true

hypothesis of a unit income elasticity, H0 : β21 = −1, is rejected by a t-test in 36.5% (MLE)

and 33.3% (GLS) of the cases, when the nominal significance level is 5%. This outcome also

implies that the empirical coverage of asymptotic confidence intervals is substantially lower

than the desired nominal level and hence, such confidence intervals are not very reliable.

The ranking of the estimators in terms of the t-test properties varies depending on the

tested coefficient, e.g., GLS is better than MLE for β21 and vice versa for β31. The mean

confidence interval (CI) length of the MLE for this DGP is about four times that of the GLS

estimator. The mean interval length is also governed by the extreme outlying observations

of the MLE. However, even the 10% trimmed mean CI length of the MLE is about two times

larger than the corresponding GLS quantity (results not shown). The empirical relative

rejection frequency of the Wald test exceeds the nominal size of 5% substantially for both

estimators. In fact, the large size distortion makes this test very unreliable with either of the

two estimators. For the MLE this result is in line with findings by Gredenhoff & Jacobson

(2001) and Fachin (2000) who propose bootstrap corrections to alleviate the problem.

Moving to the results for DGP (B) with two cointegration relations we find for T = 80

again substantially larger values of the mean bias and the MSE for the MLE. This can be
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Table 2: Properties ML and GLS estimates

DGP (A): Lütkepohl (2004) true: β21 = −1, β31 = 4, β41 = −0.0015
ML GLS ML GLS

Bias β21 -0.0767 0.0521 MSE β21 36.53 0.1052
in mean β31 -5.0923 -1.7768 β31 5867.6 5.0996

β41 0.0000 -0.0013 β41 0.0028 0.0000
Bias β21 0.0583 0.0698 IQR50 β21 0.5396 0.3461
in median β31 -0.6484 -1.8262 β31 2.8482 1.6172

β41 -0.0009 -0.0014 β41 0.0042 0.0027
Size t-test β21 0.365 0.333 Mean CI β21 2.416 0.606

β31 0.639 0.771 length β31 8.696 1.883
β41 0.455 0.473 β41 0.018 0.004

Size Wald test 0.762 0.862

DGP (B): King et al. (1991) true: β31 = β32 = −1
T ML GLS T ML GLS

Bias 80 β31 -0.3024 -0.0294 MSE 80 β31 123.39 0.0128
in mean β32 -0.5402 -0.0007 β32 447.69 0.0241

160 β31 -0.0038 -0.0064 160 β31 0.0010 0.0009
β32 0.0007 -0.0005 β32 0.0020 0.0017

Bias 80 β31 -0.0210 -0.0308 IQR50 80 β31 0.1238 0.1163
in median β32 0.0005 -0.0004 β32 0.1727 0.1613

160 β31 -0.0040 -0.0063 160 β31 0.0397 0.0383
β32 -0.0008 -0.0018 β32 0.0523 0.0518

Size t-test 80 β31 0.353 0.329 Mean CI 80 β31 0.731 0.205
β32 0.302 0.258 length β32 1.281 0.305

160 β31 0.172 0.172 160 β31 0.085 0.084
β32 0.155 0.146 β32 0.123 0.123

Size Wald test 80 0.534 0.509
160 0.264 0.255

DGP (C): Gonzalo (1994) true: β21 = −1
T ML GLS T ML GLS

Bias 30 β21 2.8627 0.2349 MSE 30 β21 2365 1.2937
in mean 50 β21 7.3849 0.1327 50 β21 59644 0.4612

100 β21 -0.0438 0.0430 100 β21 0.4771 0.1203
300 β21 -0.0054 0.0043 300 β21 0.0111 0.0102

Bias 30 β21 0.0838 0.2504 IQR50 30 β21 1.5622 1.0580
in median 50 β21 0.0221 0.1236 50 β21 0.8583 0.7070

100 β21 0.0024 0.0446 100 β21 0.4055 0.3793
300 β21 -0.0003 0.0038 300 β21 0.1127 0.1130

Size t-test 30 β21 0.485 0.344 Mean CI 30 β21 7.048 2.075
50 β21 0.348 0.257 length 50 β21 10.476 1.491

100 β21 0.193 0.176 100 β21 0.926 0.885
300 β21 0.089 0.085 300 β21 0.337 0.336

Note: IQR50 denotes the interquartile range. Nominal size for all tests is 5%. Mean CI
length is the mean confidence interval length of an asymptotic 95% interval.
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attributed to a few extreme estimates. In fact, both estimators perform similarly if judged by

the median bias criterion and the IQR50. In this case the median bias is actually quite small

for both estimators. As discussed for DGP (A), the empirical relative rejection frequencies

of the t- and Wald tests exceed the nominal level of 5% substantially. Although the rejection

frequencies based on the GLS estimates are somewhat smaller than those based on MLE, the

differences are small enough to conclude that both estimation methods perform similarly.

The mean CI length for the MLE is again governed by the few extreme outliers. Trimming by

10% yields similar interval lengths for both methods. Increasing the number of observations

to T = 160 is sufficient to eliminate the extreme ML estimates and consequently the large

differences in mean bias and MSEs. Differences between MLE and GLS in the other statistics

are now small enough to be neglected.

Finally, results for the bivariate DGP (C) show again that the extreme ML estimates are

a small sample phenomenon that can arise even for very simple DGPs. For small sample

sizes, T = 30 and T = 50, that have not been considered by Gonzalo (1994), we find

large values for the mean bias and the MSE. Increasing the sample size to T = 100 and

T = 300 leads to similar absolute mean bias for MLE and GLS, however, with opposite

signs. Note that GLS is dominated by MLE in terms of the median bias for all considered

sample sizes. Interestingly, despite the slightly larger median bias, the empirical relative

rejection frequencies of the t-tests based on GLS are somewhat closer to the nominal level

than those associated with the MLE.

In addition to the results shown in Table 2 we have conducted variations of the ex-

periments described above. For example, the effects of over- and underfitting the true lag

dynamics have been investigated. Not surprisingly, model misspecification in the form of

using fewer lags than necessary adversely affects the performance of both estimation meth-

ods. Overfitting the true lag length leads to a loss in efficiency as reflected by even larger

rejection frequencies of true hypotheses than for the true lag length. The corresponding

results are not shown as there is no sign of one method being more severely affected by over-

or underfitting than the other.

In summary, our results indicate that the reduced rank ML estimator may produce rather

extreme estimates of the cointegration parameters even for DGPs of practical relevance. We

find that the asymptotically equivalent GLS estimator performs much better in this respect

as it does not produce extreme outliers. Moreover, we conclude from our experiments that

the GLS estimator typically has a smaller sample variation but a larger median bias than

the MLE. Gonzalo (1994, p. 219) suggests to choose ‘as the best estimator the one that has
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smaller bias in median and smaller IQR’. According to this criterion none of the considered

methods dominates the other: In finite samples the MLE has typically a smaller median

bias, but a larger interquartile range. Moreover, the properties of t-tests, Wald tests and

confidence intervals based on both estimation methods are quite similar.

6 Conclusions

We have shown that the Johansen ML estimator of cointegration parameters has to be used

cautiously in applied work because it can produce extremely distorted and unreliable esti-

mates in small samples. This feature of the estimator is a reflection of its lack of moments

in small samples. Using a quarterly German monetary system we have illustrated the mag-

nitude of the problem for a particular example. A problematic feature here is that the

estimated model passes the usual diagnostic tests and hence these checks do not help de-

tecting the distorted estimates. We have also considered a simple GLS estimator which does

not produce similarly outlying estimates and performs in other respects not very differently

from the MLE. In applied work it may be a useful strategy to use both estimators and do

not trust the ML estimator if it differs drastically from the GLS estimator.

Overall we conclude that the simple GLS estimator is an attractive alternative to the MLE

especially in situations where the latter produces extreme estimates. It must be emphasized,

however, that for both estimation methods the performance of t- and Wald tests is far

from satisfactory in small samples. Solutions to this problem have been suggested, e.g.,

by Gredenhoff & Jacobson (2001) and Fachin (2000) who use bootstrap methods to test

restrictions based on the MLE. These methods may also be applied to the simple GLS

methods to improve finite sample inference.
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