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Abstract

A small system of German economic variables consisting of the money stock M3, Gross Na-

tional Product (GNP) and a bond rate is used to illustrate the power of cointegration analysis

and the usefulness of some recently developed tools for this kind of analysis. Testing for the

cointegrating rank and specifying a VECM, estimating the cointegrating relations and other

parameters as well as model checking are discussed. The estimated model is analyzed with

an impulse response analysis and a forecast error variance decomposition is performed. A

quite reasonable long-run money demand relation is found.
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1 Introduction

The cointegration framework has been developed rapidly over the last years. Its fast progress

is to a large extent due to its usefulness for applied work. Cointegration is a concept for

modelling equilibrium or long-run relations of economic variables. Many economic issues

have been reanalyzed using the cointegration toolkit with partly very interesting new findings

and insights. In this study I will use a small German macro system consisting of the three

variables log real M3 (mt), log real GNP (gnpt) and a long-term bond rate (Rt) to illustrate

the power of cointegration analysis. The system was previously analyzed by Lütkepohl

(2004b). It is modelled around a possible money demand relation. Thus, one would expect

to find one long-run relation representing a money demand function. Hence, the cointegration

framework is potentially useful for analyzing this system. The need for some of the recent

developments will be demonstrated in the analysis.

In performing a cointegration analysis, the first step is to determine the order of inte-

gration of the individual variables. This part of the analysis will be discussed in Section

3. Then the number of cointegration relations has to be investigated. This issue is dealt

with in Section 4. When the number of cointegration relations is known, their parameters

can be estimated and restrictions may be placed on them as appropriate. This step is con-

sidered in Section 5. Although the cointegration relations often form the central part of

interest, a complete model is necessary for assessing the general quality of the modelling

exercise and for subsequent further investigations or forecasting. Therefore specifying and

estimating the short-run part of the model for the DGP is discussed in Section 6. Model

checking is treated in Section 7. Once a satisfactory complete model is available the dynamic

interactions between the variables can be studied in more detail with the help of an impulse

response analysis or a forecast error variance decomposition. These tools are presented in

Section 8 and Section 9 concludes with a brief summary of some other interesting lines of

research related to cointegration.

Throughout the issues are illustrated and the methods are guided by the small German

monetary system sketched in the foregoing. The special data features call for special methods

which have only recently been developed. Therefore the example system is useful for moti-

vating the specific recent developments presented in this review. The data are discussed in

more detail in the next section. The computations are performed with the software JMulTi

(see Lütkepohl & Krätzig (2004) and the web page www.jmulti.de).

The following general notation will be used. The differencing and lag operators are

denoted by ∆ and L, respectively, that is, for a stochastic process yt, ∆yt = yt − yt−1

and Lyt = yt−1. Convergence in distribution is signified by
d→ and log denotes the natural
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logarithm. The trace, determinant and rank of the matrix A are denoted by tr(A), det(A)

and rk(A), respectively. The symbol vec is used for the column vectorization operator

so that vec(A) is the vector of columns of the matrix A. An (n × n) identity matrix is

denoted by In. DGP, ML, LS, GLS, RR and LR are used to abbreviate data generation

process, maximum likelihood, least squares, generalized least squares, reduced rank and

likelihood ratio, respectively. VAR and VECM stand for vector autoregression and vector

error correction model, respectively.

2 The Data

As mentioned in the introduction, an example model built around a money demand relation

for Germany will be used for illustrative purposes throughout. The money demand relation

is especially important for a monetary policy which targets the money stock growth. Such

a monetary policy was conducted by the Bundesbank (German central bank) in Germany

since the middle of the 1970s. Therefore investigating whether a stable money demand

relation has existed for Germany for the period of monetary targeting by the Bundesbank is

of interest.

According to economic theory real money demand should depend on the real transactions

volume and a nominal interest rate. The latter variable represents opportunity costs of

holding money. Because the quantity theory suggests a log-linear relationship, the three-

dimensional system (mt, gnpt, Rt) is considered, where mt is the log of real M3, gnpt is the

log of real GNP and Rt is the nominal long-term interest rate. The money stock measure

M3 is used because the Bundesbank announced a target growth rate for that variable since

1988. In addition to currency holdings and sight deposits, M3 also includes savings deposits

and time deposits for up to four years. Therefore it seems plausible to use a long-term

interest rate as a measure for opportunity costs. Specifically, the so-called ‘Umlaufsrendite’,

an average bond rate will be used in the following. GNP represents the transactions volume.

Clearly, in a system of this type there may be other important related variables. For instance,

inflation or an exchange rate may be considered in addition to our three variables. A small

three-dimensional system is preferable for illustrative purposes, however. An analysis of a

related larger system was performed by Lütkepohl & Wolters (2003).

Figure 1 about here.

Our sample period is 1975Q1 − 1998Q4 because the Bundesbank started its monetary

targeting policy in 1975 and at the beginning of 1999 the Euro was introduced so that the

European Central Bank became responsible for the monetary policy. Quarterly, seasonally
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unadjusted data is used. Both M3 and GNP are deflated by the GNP deflator.2 The series

mt, gnpt and Rt are plotted in Figure 1. The variables mt and gnpt have a seasonal pattern

and a level shift in the third quarter of 1990 when the monetary unification of East and West

Germany occurred. Before that date, the series only refer to West Germany and afterwards

they refer to the unified Germany. The special data features and in particular the level shifts

will be taken into account in the subsequent analysis.

3 Unit Root Analysis

We start by investigating the unit roots in the DGPs of the three individual series. In other

words, their order of integration is determined.

3.1 The Augmented Dickey-Fuller Test

The point of departure is an AR(p) with deterministic term νt, yt = α1yt−1 + · · ·+ αpyt−p +

νt + ut. This process has a unit root and is hence integrated if α(1) = 1−α1− · · · −αp = 0.

The objective is therefore to test this null hypothesis against the alternative of stationarity

of the process (i.e., α(1) > 0). For this purpose the model is reparameterized by subtracting

yt−1 on both sides and rearranging terms,

∆yt = πyt−1 +

p−1∑
j=1

γj∆yt−j + νt + ut, (1)

where π = −α(1) and γj = −(αj+1+· · ·+αp). The so-called augmented Dickey-Fuller (ADF)

test for the pair of hypotheses H0 : π = 0 versus H1 : π < 0 is based on the t-statistic of

the coefficient π from an OLS estimation of (1) (Fuller (1976), Dickey & Fuller (1979)). Its

limiting distribution is nonstandard and depends on the deterministic terms in the model.

Critical values have been simulated for different deterministic terms (see, e.g., Fuller (1976)

and Davidson & MacKinnon (1993)). In these tests the number of lagged differences of yt

may be based on model selection criteria such as AIC, HQ or SC (see Lütkepohl (1991) for

definitions) or a sequential testing procedure which eliminates insignificant coefficients (see,

e.g., Ng & Perron (1995)).

If the time series under study may have more than one unit root, the series should first

be differenced sufficiently often to make it stationary. Then an ADF test may be applied to

the differenced series. If a unit root is rejected, an ADF test is applied to the series which is

differenced one time less than in the previous test. This procedure is repeated until a unit

root cannot be rejected. Suppose for instance that a series yt is possibly I(2). Then a unit

2Details of the data sources are given in the Appendix of Lütkepohl & Wolters (2003).
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root test is applied to ∆2yt first. If it rejects, a unit root test is applied to ∆yt. If the unit

root cannot be rejected in ∆yt this result confirms that yt is indeed best modelled as an I(2)

series. If, however, a unit root is also rejected for ∆yt, the original series yt is better not

treated as I(2). This approach for determining the number of unit roots was proposed by

Pantula (1989). It is therefore sometimes called the Pantula principle.

Table 1 about here.

For the German bond rate (Rt) ADF test results are given in Table 1. From Figure 1 one

may conclude that the variable may be I(1). Therefore, the first differences are tested first.

For both lag orders given in Table 1 the test clearly rejects the unit root. A deterministic

term is not included in the test regression because a linear trend term is not regarded as

plausible for the original series and a constant term vanishes upon differencing. The tests for

a unit root in the original series do not reject the null hypothesis regardless of the lag order.

Thus we conclude that the series should be treated as an I(1) variable in the subsequent

analysis.

Bothmt and gnpt have level shifts and therefore the deterministic term should be modified

accordingly (see Perron (1989)). Suitable extensions of the ADF tests have been proposed

recently and will be discussed next.

3.2 Unit Root Tests for Series with Structural Breaks

Perron (1989, 1990) considers models with deterministic terms µt = µ0+µs0dtTB +µ1t+µ
s
1(t−

TB)dtTB , where dtTB = 0 for t ≤ TB and dtTB = 1 for t > TB. Thus, if µs0 6= 0, there is a level

shift after time TB and a change in the trend slop occurs at the same time, if µs1 6= 0 (see also

Amsler & Lee (1995) and Perron & Vogelsang (1992) for tests allowing for such deterministic

terms). Saikkonen & Lütkepohl (2002) and Lanne, Lütkepohl & Saikkonen (2002) argue that

a shift may not occur in a single period but may be spread out over a number of periods.

Moreover, there may be a smooth transition to a new level. They consider shift functions

of the general nonlinear form ft(θ)
′γ which are added to the deterministic term. Hence, if

there is, e.g., a linear trend term and a shift, we have a model

yt = µ0 + µ1t+ ft(θ)
′γ + xt, (2)

where θ and γ are unknown parameters or parameter vectors and the errors xt are assumed

to be generated by an AR(p) process, α(L)xt = ut with α(L) = 1− α1L− · · · − αpLp.
Shift functions may, for example, be based on a simple shift dummy, dtTB or an expo-

nential function such as ft(θ) = 1 − exp{−θ(t − TB)} for t ≥ TB and zero elsewhere. The
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simple shift dummy function does not involve any extra parameter θ and the parameter γ is

a scalar. The exponential shift function allows for a nonlinear gradual shift to a new level,

starting at time TB. For this type of shift, both θ and γ are scalar parameters. The first one

is confined to the positive real line (θ > 0), whereas the second one may assume any value.

Saikkonen & Lütkepohl (2002) and Lanne et al. (2002) propose unit root tests for the

model (2) which are based on estimating the deterministic term first by a generalized least

squares procedure and subtracting it from the original series. Then an ADF type test is

performed on the adjusted series x̂t = yt − µ̂0 − µ̂1t − ft(θ̂)
′γ̂ based on a model which

accounts for the estimation errors in the nuisance parameters and worked quite well in small

sample simulations (Lanne et al. (2002)). As in the case of the ADF statistic, the asymptotic

null distribution is nonstandard. Critical values are tabulated in Lanne et al. (2002). Again a

different asymptotic distribution is obtained if the deterministic linear trend term is excluded

a priori. Because the power of the test tends to improve when the linear trend is not present,

it is advisable to use any prior information regarding the deterministic term. If the series of

interest has seasonal fluctuations, it is also possible to include seasonal dummies in addition

in the model (2). Another advantage of this approach is that it can be extended easily to

the case where the break date is unknown (see Lanne, Lütkepohl & Saikkonen (2003)).

We have applied tests with a simple shift dummy and an exponential shift function to

check the integration properties of the gnpt and mt series. It is known that the break has

occurred in the third quarter of 1990 at the time of the German monetary unification. The

break date TB is therefore fixed accordingly. In Table 2 the test values for the two test

statistics are given. They are all quite similar and do not provide evidence against a unit

root in gnpt and mt.

Table 2 about here.

In Figure 2 the gnp series together with the estimated deterministic term and the adjusted

series as well as the estimated exponential shift function are plotted. It turns out that in

this case the exponential shift function looks almost like a shift dummy due to the large

estimated value for θ. The sum of squared errors objective function which is minimized in

estimating the deterministic parameters is also plotted as a function of θ in the lower right

hand panel of Figure 2. Obviously, this function is decreasing in θ. Given that for large

values of θ the exponential shift function is the same as a shift dummy for practical purposes,

the shape of the shift function is not surprising. In the estimation procedure we have actually

constrained the range of θ to the interval from zero to three because for θ = 3 the exponential

shift function almost represents an instantaneous shift to a new level. Therefore there is no

need to consider larger values.
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Figure 2 about here.

An analysis of the first differences of the two variables rejects unit roots in these series.

Hence, there is some evidence that the variables are well modelled as I(1). The results for the

first differences are not presented because the main purpose of this analysis is to illustrate

the tests for series with level shifts. The first differences of the variables do not have a level

shift anymore but just an outlying value for the third quarter of 1990 which is captured by

using an impulse dummy variable in the tests.

4 Cointegration Rank Tests

The next step of the analysis is to investigate the number of cointegration relations between

the series. A great number of proposals have been made for this purpose. Many of them

are reviewed and compared in Hubrich, Lütkepohl & Saikkonen (2001). Generally, there

is a good case for using the Johansen (1995a) likelihood ratio (LR) approach based on

Gaussian assumptions and its modifications because all other approaches were found to

have severe shortcomings in some situations. Even if the actual DGP is non Gaussian, the

resulting pseudo LR tests for the cointegrating rank may have better properties than many

competitors. Only if specific data properties make this approach problematic, using other

tests may be worth trying. However, even in the LR approach special data properties such

as level shifts should be taken into account. Suitable modifications exist and will be outlined

in the following after the standard setup has been presented.

4.1 The Model Setup

It is assumed that the DGP of a given K-dimensional vector of time series yt can be decom-

posed in a deterministic part, µt, and a stochastic part, xt,

yt = µt + xt. (3)

The deterministic part will only be of secondary interest. It may contain, e.g., a constant,

a polynomial trend, seasonals and other dummy variables. The stochastic part xt is an I(1)

process generated by a VECM of the form

∆xt = αβ′xt−1 + Γ1∆xt−1 + · · ·+ Γp−1∆xt−p+1 + ut, (4)

where ut is aK-dimensional unobservable zero mean white noise process with positive definite

covariance matrix E(utu
′
t) = Σu. The parameter matrices α and β have dimensions (K × r)

and rank r. They specify the long-run part of the model with β containing the cointegrating
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relations and α representing the loading coefficients. The Γi (i = 1, . . . , p− 1) are (K ×K)

short-run parameter matrices.

If there are deterministic terms in the DGP of the variables of interest, the xt’s are

unobserved whereas the yt’s will be the observable variables. Left-multiplying yt in (3) by

the operator ∆IK −αβ′L−Γ1∆L−· · ·−Γp−1∆Lp−1, it is easy to see that yt has the VECM

representation

∆yt = α(β′yt−1 + δco
′
dcot−1) + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + Cdst + ut

= αβ∗
′
y∗t−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + Cdst + ut,

(5)

where dcot is a vector of deterministic variables which can be absorbed into the cointegration

relations. The corresponding coefficient matrix is denoted by δco. The vector dst includes the

remaining deterministic variables with coefficient matrix C. The matrix β∗
′

= [β′ : δco
′
] is

(r×K∗) and y∗t−1 = [y′t−1, d
co′
t−1]′ is (K∗× 1) with K∗ = K+ dimension(dcot ). This is the form

of the process on which much of the inference is based.

In practice, it is necessary to determine the lag order p and the cointegrating rank r. the

former quantity may be chosen by model selection criteria or sequential testing procedures.

If r is still unknown at that stage, the least restricted form of the model should be used.

In other words, lag order selection may be based on (5) with cointegration rank K or,

equivalently, on the corresponding levels VAR representation. In the following section it is

assumed that the lag order p has been chosen in a previous step of the analysis and the

determination of the cointegrating rank is discussed for a given lag order.

4.2 The Tests

Denoting the matrix αβ′ in the error correction term by Π, the following sequence of hy-

potheses is considered in the Johansen approach:

H0(i) : rk(Π) = i versus H1(i) : rk(Π) > i, i = 0, . . . , K − 1. (6)

The cointegrating rank specified in the first null hypothesis which cannot be rejected is then

chosen as cointegrating rank r. If H0(0), the first null hypothesis in this sequence, cannot

be rejected, a VAR process in first differences is considered. If all the null hypotheses can be

rejected including H0(K − 1), rk(Π) = K and the process is I(0). Given that the variables

are supposed to be I(1), the process cannot really be I(0). In other words, under the present

assumptions, there is strictly speaking no need to consider a test of H0(K − 1). However, it

may serve as a check of the unit root analysis.

Using (pseudo) LR tests is attractive because, for any given lag order p, they are easy to

compute if the short-run parameters, Γ1, . . . ,Γp−1, are unrestricted, as shown by Johansen
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(1995a) (see also Sec. 5 of the present paper). The LR statistics under their respective

null hypotheses have nonstandard asymptotic distributions, however. They depend on the

difference K − r0 and on the deterministic terms included in the DGP but not on the short-

run dynamics.

Although the asymptotic theory for quite general situations is available, a possible prob-

lem arises in practice because the small sample properties of the tests can be improved by

specifying the deterministic terms as tightly as possible (see also Saikkonen & Lütkepohl

(1999) for an asymptotic analysis of this problem). For example, if there is no determin-

istic linear trend term, it is desirable to perform the cointegration rank tests without such

terms. On the other hand, leaving them out if they are part of the DGP can lead to major

distortions in the tests. Johansen (1995a) also provides the asymptotic theory for testing

hypotheses regarding the deterministic terms which can be helpful in this respect. Inter-

estingly, under standard assumptions these tests have asymptotic χ2 distributions with the

number of degrees of freedom corresponding to the number of restrictions imposed under

the null hypothesis.

A case which is not easily handled in this framework is a deterministic term with shift

dummy variables of the form dtTB = 0 for t ≤ TB and dtTB = 1 for t > TB, as specified

before. Shift dummy variables may be necessary to capture a level shift in the variables

in time period TB, as in the example series mt and gnpt. If such dummy variables belong

to the deterministic term, the asymptotic null distribution of the LR test statistic for the

cointegrating rank also depends on the shift period TB. This is problematic if TB is unknown.

In that case, a variant of an LR test for the cointegrating rank suggested in a series of

papers by Saikkonen and Lütkepohl is convenient (e.g., Saikkonen & Lütkepohl (2000c)).

The idea is to estimate the parameters of the model under the null hypothesis in a first step

using a model such as (5) by Johansen’s ML procedure with the shift dummy included in

dcot (see Sec. 5). Then the estimated α, β and Γi (i = 1, . . . , p − 1) are used to construct

an estimator of the covariance matrix of xt and a feasible GLS estimation is performed

to estimate the parameters of the deterministic part from a model such as (3) with shift

dummy in the deterministic term. For example, if the deterministic term has the form

µt = µ0 + µ1t + δdtTB , the parameter vectors µ0, µ1 and δ are estimated by feasible GLS

applied to yt = µ0+µ1t+δdtTB+xt. Using these estimates yt may be adjusted for deterministic

terms to obtain x̃t = yt − µ̂0 − µ̂1t − δ̂dtTB and the Johansen LR test for the cointegrating

rank is applied to x̃t.

The advantage of this procedure is that the asymptotic null distribution of the resulting

test statistic does not depend on the shift dummy or the shift date. Therefore the procedure

can be used even if the shift date is unknown. In that case, the shift date can be estimated
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first and the whole procedure may be based on an estimated TB (see Lütkepohl, Saikkonen

& Trenkler (2004)).

Although the short-run dynamics do not matter for the asymptotic theory, they have a

substantial impact in small and moderate samples. Therefore the choice of the lag order

p is quite important. Choosing p rather large to be on the safe side as far as missing out

on important short-run dynamics is concerned, may lead to a drastic loss in power of the

cointegrating rank tests. On the other hand, choosing the lag order too small may lead to

dramatic size distortions even for well-behaved DGPs. In a small sample simulation study,

Lütkepohl & Saikkonen (1999) found that using the AIC criterion for order selection may

be a good compromise. It is also a good idea to use a few different lag orders and check the

robustness of the results.

Because the dimension of the system also has an important impact on the test results

(Gonzalo & Pitarakis (1999)), it is useful to apply cointegration tests to all possible subsys-

tems as well and check whether the results are consistent with those for a higher-dimensional

model. For example, in a system of three I(1) variables, if all pairs of variables are found to

be cointegrated, the cointegrating rank of the three-dimensional system must be 2.

There are many interesting suggestions for modifying and improving the Johansen ap-

proach to cointegration testing. For example, to improve the performance of the Johansen

cointegration tests in small samples, Johansen (2002) presents a Bartlett correction. Also

there are a number of proposals based on different ideas. As mentioned previously, much of

the earlier literature is reviewed in Hubrich et al. (2001). Generally, at present it appears

that the Johansen approach should be the default and only if there are particular reasons

other proposals are worth contemplating.

4.3 Cointegration Tests for the Example System

As suggested in the previous section, the rank of all pairs of series is investigated in addi-

tion to the rank of the three-dimensional system. Knowing the cointegrating ranks of the

subsystems can also be helpful in finding a proper normalization of the cointegration matrix

for the estimation stage (see Section 5). Because of the shift in the mt and gnpt series in the

third quarter of 1990 a shift dummy variable will be allowed for and the cointegration tests

proposed by Saikkonen and Lütkepohl (S&L tests) are used. Table 3 contains the results.

Table 3 about here.

The deterministic terms in addition to the shift dummies and the number of lagged

differences in the model have to be specified before the tests can be carried out. Because mt

and gnpt both have some seasonality and a trending behavior that may perhaps be captured
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with a linear trend term, seasonal dummy variables and a linear trend term are included in

the models used in the tests. To avoid a decision whether the trend is just in the variables

and, hence, orthogonal to the cointegration relations or fully general, both types of tests

are performed. Notice that if the trend is orthogonal to the cointegration relations, it is

captured by an intercept term in the specification (5).

An easy way to choose the number of lagged differences to be included in the model is to

apply model selection criteria. Using a maximum lag order of 10, the lag orders specified in

Table 3 were suggested by AIC and HQ. The larger number of lagged differences is always the

one chosen by AIC and the lower lag order is obtained with the HQ criterion. Considering

different orders is useful in this context because choosing the order too small can lead to size

distortions for the tests while selecting too large an order may result in power reductions.

In Table 3 the sample period is 1975Q1− 1998Q4, including presample values needed in

the estimation. There is strong evidence for a cointegration rank of zero for the (mt, gnpt)

and (gnpt, Rt) systems so that the two variables in each of these systems are not likely to

be cointegrated. On the other hand, one cointegration relation is found for the (mt, Rt)

system under both alternative trend specifications. Thus, one would also expect to find

at least one cointegration relation in the three-dimensional system of all variables. If no

cointegration relation exists between mt and gnpt as well as between gnpt and Rt as suggested

by the bivariate analysis, then there cannot be a second cointegration relation between the

three variables. If two linearly independent cointegration relations exist between the three

variables, they can always be transformed so that they both involve just two of the variables,

as we will see in Section 5. Consistent with the results for the bivariate models, there is

some evidence of just one cointegration relation in the three-dimensional system.

5 Estimating the Cointegration Relations

5.1 Estimation Methods

5.1.1 Reduced Rank ML Estimation

For a given cointegrating rank and lag order, the VECM (5) can be estimated by RR regres-

sion as shown in Johansen (1991, 1995). Assuming that a sample of size T and p presample

values are available, the estimator may be determined by denoting the residuals from regress-

ing ∆yt and y∗t−1 on ∆Y ′t−1 = [∆y′t−1, . . . ,∆y
′
t−p+1, d

s′
t ] by R0t and R1t, respectively, defining

Sij = T−1
∑T

t=1RitR
′
jt, i, j = 0, 1, and solving the generalized eigenvalue problem

det(λS11 − S10S
−1
00 S01) = 0. (7)
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Let the ordered eigenvalues be λ1 ≥ · · · ≥ λK∗ with corresponding matrix of eigenvectors

B = [b1, . . . , bK∗ ] satisfying λiS11bi = S ′01S
−1
00 S01bi and normalized such that B′S11B = IK∗ .

Estimators of β∗ and α are then given by

β̂∗ = [b1, . . . , br] and α̂ = S01β̂
∗(β̂∗

′
S11β̂

∗)−1. (8)

The corresponding estimator of Γ = [Γ1, . . . ,Γp−1, C] is

Γ̂ =

(
T∑
t=1

(∆yt − α̂β̂∗′y∗t−1)∆Y ′t−1

)(
T∑
t=1

∆Yt−1∆Y ′t−1

)−1

Under Gaussian assumptions these estimators are ML estimators conditional on the presam-

ple values (Johansen (1995a)). The estimator of Γ is consistent and asymptotically normal

under general assumptions and, if there are no deterministic terms,

√
Tvec(Γ̂− Γ)

d→ N(0,ΣΓ̂).

Here the asymptotic distribution of Γ̂ has a nonsingular covariance matrix ΣΓ̂ so that stan-

dard inference may be used for the short-run parameters Γj. The convergence rate for the

deterministic terms may be different if polynomial trends are included.

For the estimators α̂ and β̂∗, the product Π̂∗ = α̂β̂∗
′
is also a consistent and asymptotically

normally distributed estimator,

√
Tvec(Π̂∗ − Π∗) d→ N(0,ΣΠ̂∗).

The (KK∗ × KK∗) covariance matrix ΣΠ̂∗ is singular if r < K, however. The matrices α

and β are only identified individually with further restrictions. Identifying and overidenti-

fying restrictions for these matrices have been the subject of some recent research (see, e.g.,

Johansen (1995a), Johansen & Juselius (1992, 1994) , Boswijk (1995, 1996), Elliott (2000),

Pesaran & Shin (2002), Boswijk & Doornik (2002)). The latter article allows for very general

nonlinear restrictions. For our purposes imposing restrictions on α, β and other parameters

may be useful either for reducing the parameter space and thereby improving estimation pre-

cision or to identify the cointegration relations to associate them with economic relations.

Imposing just-identifying restrictions on α and/or β does not do any damage. Therefore, we

are free to impose just-identifying restrictions on the cointegration parameters.

A triangular form has received some attention in the literature (see, e.g., Phillips (1991)).

It assumes that the first part of β is an identity matrix, β′ = [Ir : β′(K−r)] and, hence,

β∗
′
= [Ir : β∗

′
(K∗−r)], where β(K−r) is ((K− r)× r) and β∗(K∗−r) is a ((K∗− r)× r) matrix. For

r = 1, this restriction amounts to normalizing the coefficient of the first variable to be one.

Given that rk(β) = r, there exists a nonsingular (r× r) submatrix of β′ which motivates the
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normalization. Notice that Π∗ = αβ∗
′

= αΦΦ−1β∗
′

for any nonsingular (r × r) matrix Φ.

Hence, choosing Φ such that it corresponds to the nonsingular (r×r) submatrix of β′ results in

a decomposition of Π∗ where β and, hence, β∗ contains an identity submatrix. By a suitable

rearrangement of the variables it can be ensured that β′ is of the form [Ir : β′(K−r)]. It should

be clear, however, that such a normalization requires a suitable order of the variables. Some

care is necessary in choosing this order to make sure that only valid cointegration relations

result. In practice, it is usually fairly easy to choose the order of the variables properly if the

cointegrating ranks of all subsystems are known as well. In other words, in the initial analysis

it will be useful to not only check the cointegrating rank of the system of interest but also

of all smaller dimensional subsystems, as was done for the example system. There are also

formal statistical tests for normalizing restrictions (e.g., Luukkonen, Ripatti & Saikkonen

(1999)).

The normalization ensures identified parameters β∗(K∗−r) so that inference becomes pos-

sible. To simplify matters, it is now assumed that there are no deterministic terms in the

model. The estimators for the parameters β(K−r) have an asymptotic distribution which is

multivariate normal upon appropriate normalization. Partitioning R1t as R′1t = [R
(1)′
1t , R

(2)′
1t ]

where R
(1)
1t and R

(2)
1t are (r × 1) and ((K − r)× 1), respectively, it holds that

vec

{
(β̂′(K−r) − β′(K−r))

(∑T
t=1R

(2)
1t R

(2)′
1t

)1/2
}

=

[(∑T
t=1R

(2)
1t R

(2)′
1t

)1/2

⊗ IK−r
]

vec(β̂′(K−r) − β′(K−r))
d→ N(0, IK−r ⊗ (α′Σ−1

u α)−1)
(9)

(e.g., Reinsel (1993, Chapter 6)). The asymptotic distribution of the untransformed estima-

tor is mixed normal (see Johansen (1995a)). The present result is useful for deriving t-tests

or Wald tests for restrictions on the parameters β(K−r).

Using that T−2
∑T

t=1R
(2)
1t R

(2)′
1t converges weakly, it can be seen from this result that

Tvec(β̂′(K−r) − β′(K−r)) has an asymptotic distribution. In other words, the estimator β̂′(K−r)
converges at a rate T rather than

√
T .

Imposing identifying restrictions on β, expressions for the asymptotic covariances of the

other parameters are also readily available:

√
Tvec([α̂, Γ̂1, . . . , Γ̂p−1]− [α,Γ1, . . . ,Γp−1])

d→ N(0,Ω−1 ⊗ Σu),

where

Ω = plim T−1

T∑
t=1

([
β′yt−1

∆Yt−1

]
[y′t−1β,∆Y

′
t−1]

)
.

Asymptotically these parameters are distributed independently of β̂(K−r).

Deterministic terms can be included by just extending the relevant quantities in the fore-

going formulas. For example deterministic terms not included in the cointegration relations
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are taken into account by adding the components to ∆Yt−1 and extending the parameter

matrix Γ accordingly. Deterministic terms which are restricted to the cointegration relations

are accounted for by using y∗t−1 and β∗ instead of yt−1 and β in the error correction term. The

convergence rates of the deterministic terms depend on the specific components included.

5.1.2 A Two-step Estimator

Ahn & Reinsel (1990), Reinsel (1993, Chapter 6) and Saikkonen (1992) proposed another

estimator for the cointegration parameters. To focus on the latter parameters, we consider

the concentrated model corresponding to the VECM (5),

R0t = αβ∗
′
R1t + ũt. (10)

Using the normalization β∗
′
= [Ir : β∗

′
(K∗−r)], this model can be written in the form

R0t − αR(1)
1t = αβ∗

′
(K∗−r)R

(2)
1t + ũt, (11)

where R
(1)
1t and R

(2)
1t again consist of the first r and last K∗−r components of R1t, respectively.

Premultiplying (11) by (α′Σ−1
u α)−1α′Σ−1

u and defining wt = (α′Σ−1
u α)−1α′Σ−1

u (R0t − αR(1)
1t ),

gives

wt = β∗
′

(K∗−r)R
(2)
1t + vt, (12)

where vt = (α′Σ−1
u α)−1α′Σ−1

u ũt is an r-dimensional error vector. The corresponding error

term of the unconcentrated model is a white noise process with mean zero and covariance

matrix Σv = (α′Σ−1
u α)−1.

From this model β∗
′

(K∗−r) can be estimated by a two step procedure. In the first step,

the parameters in the model R0t = Π∗R1t + ũt are estimated by unrestricted OLS. The first

r columns of Π∗ are equal to α and hence these columns from the estimated matrix are

used as an estimator α̃. This estimator and the usual residual covariance estimator are used

to obtain a feasible version of wt, say w̃t = (α̃′Σ̃−1
u α̃)−1α̃′Σ̃−1

u (R0t − α̃R(1)
1t ). This quantity

is substituted for wt in (12) in the second step and β∗
′

(K∗−r) is estimated from that model

by OLS. The resulting two step estimator has the same asymptotic distribution as the ML

estimator (see Ahn & Reinsel (1990) and Reinsel (1993, Chapter 6)).

5.1.3 Other Estimators

So far we have started from a parametrically specified model setup. If interest centers on the

cointegration parameters only, it is always possible to find a transformation of the variables

such that the system of transformed variables can be written in so-called triangular form,

y1t = β′(K−r)y2t + z1t and ∆y2t = z2t,
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where zt = [z′1t, z
′
2t]
′ is a general stationary linear process. Phillips (1991) considers inference

for the cointegration parameters in this case and shows that the covariance structure of zt

has to be taken into account for optimal inference. Very general nonparametric estimators

are sufficient, however, to obtain asymptotic optimality. Hence, it is not necessary to assume

a specific parametric structure for the short-run dynamics.

There are also other systems methods for estimating the cointegrating parameters. For

example, Stock & Watson (1988) consider an estimator based on principal components and

Bossaerts (1988) uses canonical correlations. These estimators were shown to be inferior to

Johansen’s ML method in a comparison by Gonzalo (1994) and are therefore not further

considered here.

5.1.4 Restrictions for the Cointegration Relations

In case just identifying restrictions for the cointegration relations are available, estimation

may proceed by RR regression and then the identified estimator of β may be obtained by

a suitable transformation of β̂. For example, if β is just a single vector, a normalization

of the first component may be obtained by dividing the vector β̂ by its first component, as

discussed previously.

Sometimes over-identifying restrictions are available for the cointegration matrix. They

can be handled easily if they can be written in the form β∗ = Hϕ, where H is some known,

fixed (K∗ × s) matrix and ϕ is (s × r) with s ≥ r. In this case R1t is simply replaced by

H ′R1t in the quantities entering the generalized eigenvalue problem (7), that is, we have to

solve

det(λH ′S11H −H ′S ′01S
−1
00 S01H) = 0 (13)

for λ to get λH1 ≥ · · · ≥ λHs . The eigenvectors corresponding to λH1 , . . . , λ
H
r are the estimators

of the columns of ϕ. Denoting the resulting estimator by ϕ̂ gives a restricted estimator

β̂∗ = Hϕ̂ for β∗ and corresponding estimators of α and Γ as previously.

More generally, restrictions may be available in the form β∗ = [H1ϕ1, . . . , Hrϕr], where

Hj is (K × sj) and ϕj is (sj × 1) (j = 1, . . . , r). In that case, restricted ML estimation

is still not difficult but requires an iterative optimization whereas the two-step estimator is

available in closed form, as will be shown now.

In general, if the restrictions can be represented in the form

vec(β∗
′

(K∗−r)) = Hη + h,

where H is a fixed matrix, h a fixed vector and η a vector of free parameters, the second
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step of the two-step estimator given in (13) may be adapted using the vectorized form

wt = (R
(2)′
1t ⊗ Ir)vec(β∗

′
(K∗−r)) + vt

= (R
(2)′
1t ⊗ Ir)(Hη + h) + vt

so that

w̃t − (R
(2)′
1t ⊗ Ir)h = (R

(2)′
1t ⊗ Ir)Hη + vt

can be used in the second step. The feasible GLS estimator of η, say ˜̃η, has an asymptotic

normal distribution upon appropriate normalization so that t-ratios can be obtained and

interpreted in the usual manner.

5.2 Estimating the Example Cointegration Relation

Using the results of Section 4.3, we consider a VECM for the example series with cointegrat-

ing rank one, four lagged differences and and seasonal dummy variables. Moreover, the shift

dummy is included in differenced form only because it turned out to be unnecessary in the

cointegration relation. In other words, an impulse dummy variable I90Q3t = ∆S90Q3t is

included instead of the shift dummy. A linear trend term was also included initially but was

found to be insignificant. The money variable mt is the first variable in our model because

we want its coefficient to be normalized to one in the cointegration relation. The resulting

ML estimator of the cointegration relation with standard errors in parentheses is

ecML
t = mt − 1.093

(0.090)

gnpt + 6.514
(1.267)

Rt

or

mt = 1.093
(0.090)

gnpt − 6.514
(1.267)

Rt + ecML
t .

This equation is easily interpreted as a money demand relation, where increases in the

transactions volume increase money demand and increases in the opportunity costs (Rt)

reduce the demand for money. The coefficient 1.093 of gnpt is the estimated output elasticity

because mt and gnpt appear in logarithms. For a constant velocity of money a 1% increase

in the transactions volume is expected to induce a 1% increase in money demand. In other

words, the output elasticity is expected to be one in a simple theoretical model. Therefore it

is appealing that the gnpt coefficient is close to 1. In fact, taking into account its standard

deviation of 0.090, it is not significantly different from 1 at common significance levels. Using

the two-step estimator for estimating the cointegration relation with a unit income elasticity

gives

mt = gnpt − 3.876
(0.742)

Rt + ec2S
t . (14)
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Notice that in this relation the coefficient of Rt is a semi elasticity because the interest rate

is not in logarithms.

Taking into account the results of the cointegrating rank tests in Section 4.3, it may be

puzzling that we found a cointegration relation between mt and Rt that does not involve gnpt

in testing the bivariate system. This result suggests that the single cointegration relation

found in the three-dimensional analysis may be one between mt and Rt only which does

not fit together with our money demand function (14). Because gnpt enters significantly in

the cointegration relation there is indeed a slight inconsistency between the bivariate and

the three-dimensional analysis. Maintaining all three variables in the cointegration relation

may still be reasonable because eliminating gnpt from the cointegration relation imposes a

restriction on the model which is rejected by the full three-dimensional information set.

6 Estimation of Short-run Parameters and Model Re-

duction

A VECM may also be estimated with restrictions on the loading coefficients (α), the short-

run (Γ) and other parameter matrices. Restrictions for α are typically zero constraints,

meaning that some cointegrating relations are excluded from some of the equations of the

system. Usually it is possible to estimate β∗ in a first stage. For example, ignoring the

restrictions for the short-run parameters, the RR regression ML procedure or the two-step

procedure may be used.

The first stage estimator β̂∗, say, may be treated as fixed in a second stage estimation

of the restricted VECM, because the estimators of the cointegrating parameters converge at

a better rate than the estimators of the short-run parameters. In other words, a systems

estimation procedure may be applied to

∆yt = αβ̂∗
′
y∗t−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + Cdst + ût. (15)

If only exclusion restrictions are imposed on the parameter matrices in this form, standard

econometric systems estimation procedures such as feasible GLS or SURE (e.g., Judge,

Griffiths, Hill, Lütkepohl & Lee (1985)) or similar methods may be applied which result in

estimators of the short-run parameters with the usual asymptotic properties. A substantial

number of articles deals with estimating models containing integrated variables. Examples

are Phillips (1987, 1991), Phillips & Durlauf (1986), Phillips & Hansen (1990) and Phillips

& Loretan (1991). A textbook treatment is given in Davidson (2000).

Some care is necessary with respect to the treatment of deterministic variables. For the

parameters of those terms which are properly restricted to the cointegration relations the
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properties can be recovered from a result similar to that given in (9). Thus, for example,

t-ratios can be interpreted in the usual way. The properties of the estimators corresponding

to dst are not treated in detail here because in a subsequent analysis of the model, the

parameters of the deterministic terms are often of minor interest (see, however, Sims, Stock

& Watson (1990)).

The standard t-ratios and F -tests retain their usual asymptotic properties if they are

applied to the short-run parameters in a VECM. Hence, individual zero coefficients can be

imposed based on the t-ratios of the parameter estimators and one may sequentially eliminate

those regressors with the smallest absolute values of t-ratios until all t-ratios (in absolute

value) are greater than some threshold value γ. Alternatively, restrictions for individual

parameters or groups of parameters in VECMs may be based on model selection criteria.

Brüggemann & Lütkepohl (2001) discuss the relation between sequential testing procedures

and using model selection criteria in this context.

Using the cointegration relation in (14) I have performed a model reduction starting from

a model with four lagged differences of the variables. The model reduction procedure was

based on a sequential selection of variables and the AIC. The following estimated model was

obtained:



∆mt

∆gnpt

∆Rt


 =




−0.04
(-3.1)

0

−0.01
(-1.6)




(mt−1 − gnpt−1 + 3.876Rt−1)

+




0.15
(2.5)

−0.18
(-2.9)

−0.58
(-3.4)

0.22
(2.8)

−0.36
(-4.2)

0

0 0 0.18
(1.8)







∆mt−1

∆gnpt−1

∆Rt−1


+




0 0 −0.30
(-1.6)

0.25
(3.1)

−0.22
(-2.4)

0.37
(1.5)

0 0 0







∆mt−2

∆gnpt−2

∆Rt−2




+




0 −0.09
(-1.8)

0

0 0 0

0 0 0.18
(1.8)







∆mt−3

∆gnpt−3

∆Rt−3


+




0 0 0

0 0.28
(4.0)

0

0 0 0







∆mt−4

∆gnpt−4

∆Rt−4
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+




0.15
(17.5)

0.07
(4.9)

−0.03
(-5.4)

−0.02
(-3.5)

−0.02
(-4.4)

0.11
(8.9)

0.04
(7.7)

−0.07
(-9.1)

−0.03
(-4.2)

−0.03
(-3.5)

0 0.01
(1.5)

0 0 0







I90Q3t

c

s1,t

s2,t

s3,t




+



û1,t

û2,t

û3,t


 . (16)

Here estimation of the final model was done by feasible GLS applied to the full system

and the t-values are given in parentheses. For the residuals the following covariance and

correlation matrices were estimated:

Σ̃u =




6.85 −0.01 0.40

· 13.3 1.12

· · 2.59


× 10−5 and C̃orr =




1 −0.00 0.10

· 1 0.19

· · 1


 .

The off-diagonal elements of C̃orr are all quite small, given the effective sample size of T = 91

observations. Clearly, they are all smaller than 2/
√
T = 0.21. Hence, they may be classified

as not significantly different from zero. This result is good to remember at a later stage

when an impulse response analysis is performed (see Section 8).

7 Model Checking

7.1 Some Tools

Various checks of the adequacy of a given model are available for VECMs. One group of

checks considers the estimated residuals and another one investigates the time invariance of

the model parameters. Residual based tests for autocorrelation, nonnormality, conditional

heteroskedasticity etc. are available for stationary VAR models (e.g., Lütkepohl (1991),

Doornik & Hendry (1997)). Many of the tests have been extended to VECMs with cointe-

grated variables as well. The modifications relative to the stationary VAR case are usually

straightforward. Therefore these tests will not be discussed here. The situation is somewhat

different with respect to checks of parameter constancy. In addition to more classical tests,

specific tools for this purpose have been developed which are especially suitable for VECMs.

Some of them will be presented in the following.

7.1.1 Chow Tests for Structural Stability

Chow tests check the null hypothesis of time invariant parameters throughout the sample

period against the possibility of a change in the parameter values in period TB. The model

under consideration is estimated from the full sample of T observations and from the first T1
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and the last T2 observations, where T1 < TB and T2 ≤ T −TB. The test is constructed using

the LR principle based on Gaussian assumptions. In other words, the likelihood maximum

from the constant parameter model is compared to the one with different parameter values

before and after period TB, leaving out the observations between T1 and T−T2 +1. Denoting

the conditional log-density of the t-th observation vector by lt = log f(yt|yt−1, . . . , y1), the

Chow test statistic can be written as

λChow = 2

[
sup

(
T1∑
t=1

lt

)
+ sup

(
T∑

t=T−T2+1

lt

)
−
(

T1∑
t=1

l∗t +
T∑

t=T−T2+1

l∗t

)]
,

where l∗t is the log-likelihood increment for observation t evaluated at the parameter values

which maximize the likelihood over the full sample. If the model is time invariant, the

statistic has an asymptotic χ2-distribution. The degrees of freedom are given by the number

of restrictions imposed by assuming a constant coefficient model for the full sample period,

that is, it is the difference between the sum of the number of free coefficients estimated in

the first and last subperiods and the number of free coefficients in the full sample model

(see Hansen (2003)). The parameter constancy hypothesis is rejected if the value of the test

statistic is large.

From the point of view of asymptotic theory there is no need to leave out any observations

between the two subsamples. So T1 = TB−1 and T2 = T−TB is a possible choice. In practice,

if the parameter change has not occurred instantaneously at the beginning of period TB, but

is spread out over a few periods or its exact timing is unknown, leaving out some observations

may improve the small sample power of the test.

Various generalizations of these tests are possible. For example, one could test for more

than one break or one could check constancy of a subset of parameters keeping the remaining

ones fixed. Moreover, there may be deterministic terms in the cointegration relations or the

number of cointegration relations may change in different subperiods. These generalizations

are also treated by Hansen (2003). A Chow forecast test version for multivariate time series

models was considered by Doornik & Hendry (1997). It tests the null hypothesis that the

forecasts from a model fitted to the first TB observations are in line with the actually observed

data. Doornik & Hendry (1997) also proposed small sample corrections of the tests which

may be used in conjunction with critical values from F distributions.

Candelon & Lütkepohl (2001) pointed out that especially for multivariate time series

models the asymptotic χ2 distribution may be an extremely poor guide for small sample

inference. Even adjustments based on F approximations can lead to drastically distorted

test sizes. Therefore they proposed to use bootstrap versions of the Chow tests in order to

improve their small sample properties.

Chow tests are sometimes performed repeatedly for a range of potential break points TB.
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If the test decision is based on the maximum of the test statistics, the test is effectively

based on the test statistic supTB∈T λChow, where T ⊂ {1, . . . , T} is the set of periods for

which the test statistic is determined. The asymptotic distribution of this test statistic is

not χ2. Distributions of test statistics of this kind are discussed by Andrews (1993), Andrews

& Ploberger (1994) and Hansen (1997).

7.1.2 Recursive Eigenvalues

For parameter constancy analysis, Hansen & Johansen (1999) proposed recursive statistics

based on the eigenvalues that were encountered in the RR ML estimation procedure. Let

λ
(τ)
i be the i-th largest eigenvalue based on sample moments from the first τ observations

only. They present approximate 95% confidence intervals for the nonzero true eigenvalues

corresponding to λ
(τ)
1 , . . . , λ

(τ)
r under the assumption of time invariance of the DGP. The

plots of the intervals for consecutive sample sizes τ = Tmin, . . . , T , can reveal structural

breaks in the DGP.

Hansen & Johansen (1999) also proposed formal tests for parameter constancy. The

following notation will be used in stating them:

ξ
(τ)
i = log

(
λ

(τ)
i

1− λ(τ)
i

)

and

T (ξ
(τ)
i ) =

τ

T
|(ξ(τ)

i − ξ(T )
i )/σ̂ii|,

where σ̂ii is a suitable estimator of the standard deviation of (ξ
(τ)
i −ξ(T )

i ). The statistic T (ξ
(τ)
i )

compares the i-th eigenvalue obtained from the full sample to the one estimated from the

first τ observations only and Hansen & Johansen (1999) have shown that the maximum over

all τ ,

sup
Tmin≤τ≤T

T (ξ
(τ)
i ),

has a limiting distribution which depends on a Brownian bridge. Critical values were tab-

ulated by Ploberger, Krämer & Kontrus (1989). If the difference between the eigenvalues

based on the subsamples and the full sample gets too large so that T (ξ
(τ)
i ) exceeds the

relevant critical value, the parameter constancy is rejected.

An alternative test considers the sum of the r largest recursive eigenvalues. It is based

on the statistic

T
(

r∑
i=1

ξ
(τ)
i

)
=
τ

T

∣∣∣∣∣

[
r∑
i=1

(ξ
(τ)
i − ξ(T )

i )

]
/σ̂1−r

∣∣∣∣∣ .
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Here σ̂1−r is an estimator of the standard deviation of the quantity
∑r

i=1(ξ
(τ)
i − ξ(T )

i ). The

limiting distribution of

sup
Tmin≤τ≤T

T
(

r∑
i=1

ξ
(τ)
i

)

is also given by Hansen & Johansen (1999).

7.2 Checking the Example Model

Estimating a VECM as in (16) with cointegrating rank one but otherwise unrestrictedly by

the RR ML procedure and checking the residuals with autocorrelation and nonnormality

tests, it turned out that the model is a quite satisfactory representation of the DGP. De-

tailed results are not shown to save space. Also a stability analysis based an the recursive

eigenvalues and the T (ξ
(τ)
1 ) statistic for 1986Q1− 1998Q4 did not give rise to concern. The

value of the test statistic did not exceed the critical value for a 5% level test.

The sample-split Chow tests in Figure 3 show a somewhat different picture, however.

The p-values are computed by a bootstrap on the assumption that a test is made for a single

break point only. The cointegration relation is fixed throughout the sample. Moreover,

the test assumes a time invariant residual covariance matrix. Notice that the test statistic

is only computed for the center part of the sample because sufficiently many degrees of

freedom have to be available for estimation in the two subsamples. Clearly, quite small p-

values are estimated for part of the sample. Thus, one may conclude that there is a stability

problem for the model parameters. A closer investigation reveals, however, that there is a

possible ARCH problem in the residuals of the interest rate equation. ARCH effects in the

residuals of financial data series such as interest rates are fairly common in practice. They

are not necessarily a signal of inadequate modelling of the conditional mean of the DGP.

Because interest centers on the latter part in the present analysis, the possibly remaining

ARCH in the residuals of the interest rate equation is ignored. ARCH in the residuals

signals volatility clusters that can lead to significant values of Chow tests because these tests

compare the residual variability in different subperiods to decide on parameter instability.

Higher volatility is indeed found in the first part of the sample and may be responsible for

the significant sample-split Chow tests.

Figure 3 about here.

The usual diagnostic tests for autocorrelation in the residuals of the restricted model

(16) did not give rise to concern about the adequacy of the subset model either. Given the

results of the stability test based on the recursive eigenvalues, the model is used as a basis for
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further analysis in the following section. Possible tools for such an analysis are considered

next.

8 Impulse Response Analysis

8.1 Background

For an I(0) process yt, the effects of shocks in the variables are easily seen in its Wold moving

average (MA) representation,

yt = ut + Φ1ut−1 + Φ2ut−2 + · · · . (17)

The coefficient matrices of this representation may be obtained by recursive formulas from

the coefficient matrices Aj of the levels VAR representation, yt = A1yt−1+· · ·+Apyt−p+νt+ut,
where νt contains all deterministic terms (see Lütkepohl (1991, Chapter 2)). The elements

of the Φs’s may be interpreted as the responses to impulses hitting the system. In particular,

the ijth element of Φs represents the expected marginal response of yi,t+s to a unit change

in yjt holding constant all past values of the process. Because uit is the forecast error in yit

given {yt−1, yt−2, . . .}, the elements of Φs represent the impulse responses of the components

of yt with respect to the ut innovations. Because these quantities are just the 1-step ahead

forecast errors the corresponding impulse responses are sometimes referred to as forecast

error impulse responses (Lütkepohl (1991)). In the presently considered I(0) case, Φs → 0

as s→∞. Consequently, the effect of an impulse vanishes over time and is hence transitory.

These impulse responses have been criticized on the grounds that the underlying shocks

may not occur in isolation if the components of ut are instantaneously correlated. Therefore,

orthogonal innovations are preferred in an impulse response analysis. Using a Choleski

decomposition of the covariance matrix E(utu
′
t) = Σu is one way to obtain uncorrelated

innovations. Let B be a lower-triangular matrix with the property that Σu = BB′. Then

orthogonalized shocks are given by εt = B−1ut. Substituting in (17) and defining Ψi = ΦiB

(i = 0, 1, 2, . . .) gives

yt = Ψ0εt + Ψ1εt−1 + · · · . (18)

Notice that Ψ0 = B is lower triangular so that the first shock may have an instantaneous

effect on all the variables, whereas the second shock can only have an instantaneous effect on

y2t to yKt but not on y1t. This way a recursive Wold causal chain is obtained. The ε shocks

are sometimes called orthogonalized impulse responses because they are instantaneously un-

correlated (orthogonal).

A drawback of these shocks is that many matrices B exist which satisfy BB′ = Σu.

The Choleski decomposition is to some extent arbitrary if there are no good reasons for a
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particular recursive structure. Clearly, if a lower triangular Choleski decomposition is used to

obtain B, the actual innovations will depend on the ordering of the variables in the vector yt

so that different shocks and responses may result if the vector yt is rearranged. In response to

this problem, Sims (1981) recommended to consider different triangular orthogonalizations

and check the robustness of the results if no particular ordering is suggested by economic

theory. Taking into account subject matter theory in identifying the relevant impulses is the

idea underlying structural VAR modelling. I do not discuss that issue here in detail here

but refer the reader to Breitung, Brüggemann & Lütkepohl (2004) for a recent introduction.

For nonstationary cointegrated processes the Wold representation does not exist. Still

the Φs impulse response matrices can be computed as for stationary processes from the levels

version of a VECM (Lütkepohl (1991, Chapter 11), Lütkepohl & Reimers (1992)). Generally

the Φs will not converge to zero as s→∞ in this case. Consequently, some shocks may have

permanent effects. Distinguishing between shocks with permanent and transitory effects can

also help in finding identifying restrictions for the innovations and impulse responses of a

VECM. For an introduction to structural VECMs see also Breitung et al. (2004).

8.2 Statistical Inference for Impulse Responses

8.2.1 Asymptotic Theory Considerations

Suppose an estimator θ̂, say, of the model parameters θ is available. Then an impulse re-

sponse coefficient φ = φ(θ), say, can be estimated as φ̂ = φ(θ̂). If θ̂ has an asymptotic normal

distribution,
√
T (θ̂− θ) d→ N(0,Σθ̂), then φ̂ is also asymptotically normally distributed. De-

noting by ∂φ/∂θ the vector of first order partial derivatives of φ with respect to the elements

of θ and using the delta method gives

√
T (φ̂− φ)

d→ N(0, σ2
φ̂
), (19)

where σ2
φ̂

= ∂φ
∂θ′Σθ̂

∂φ
∂θ

. This result holds if σ2
φ̂

is nonzero which is guaranteed if Σθ̂ is nonsingular

and ∂φ/∂θ 6= 0. The covariance matrix Σθ̂ may be singular if the system contains I(1)

variables. The partial derivatives will also usually be zero in some points of the parameter

space because the φ generally consist of sums of products of the VAR coefficients. Then

the partial derivatives will also be sums of products of such coefficients which may be zero.

The partial derivatives are nonzero if all elements of θ are nonzero. Therefore, fitting subset

models where all those coefficients are restricted to zero which are actually zero, helps to make

the asymptotics for impulse responses work (see Benkwitz, Lütkepohl & Wolters (2001)).
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8.2.2 Bootstrapping Impulse Responses

In practice, confidence intervals (CIs) for impulse responses are often constructed by boot-

strap methods because they have some advantages over asymptotic CIs. In particular, they

were found to be more reliable in small samples than those based on asymptotic theory (e.g.,

Kilian (1998)). Moreover, precise expressions for the asymptotic variances of the impulse

response coefficients are not needed if a bootstrap is used. The asymptotic variances are

rather complicated (e.g., Lütkepohl (1991, Chapter 3)) and it may therefore be an advantage

if they can be avoided.

Typically, a residual based bootstrap is used in this context. Let φ, φ̂ and φ̂∗ denote some

general impulse response coefficient, its estimator implied by the estimators of the model

coefficients and the corresponding bootstrap estimator, respectively. The standard percentile

interval is perhaps the most common method in setting up CIs for impulse responses in

practice. It is given by
[
s∗γ/2, s

∗
(1−γ/2)

]
, where s∗γ/2 and s∗(1−γ/2) are the γ/2- and (1 − γ/2)-

quantiles, respectively, of the empirical distribution of the φ̂∗ (see, e.g., Efron & Tibshirani

(1993)). Benkwitz et al. (2001) also consider Hall’s percentile interval (Hall (1992)) which is

derived using that the distribution of
√
T (φ̂−φ) is approximately equal to that of

√
T (φ̂∗−φ̂)

in large samples. The resulting CI is
[
φ̂− t∗(1−γ/2), φ̂− t∗γ/2

]
. Here t∗γ/2 and t∗(1−γ/2) are the

γ/2- and (1− γ/2)-quantiles, respectively, of the empirical distribution of (φ̂∗ − φ̂).

Unfortunately, the bootstrap generally does not overcome the problems due to a sin-

gularity in the asymptotic distribution which results from a zero variance in (19). In these

cases bootstrap CIs may not have the desired coverage probability as discussed by Benkwitz,

Lütkepohl & Neumann (2000). To overcome these problems one may (i) consider bootstrap

procedures that adapt to the kind of singularity in the asymptotic distribution, (ii) fit sub-

set models or (iii) assume an infinite VAR order. The first one of these approaches has

drawbacks in empirical applications (see Benkwitz et al. (2000)). Either they are not very

practical for processes of realistic dimension and autoregressive order or they do not perform

well in samples of typical size.

Fitting subset models may also be problematic because this only solves the singularity

problem if indeed all zero coefficients are found (Benkwitz et al. (2001)). Usually there is

uncertainty regarding the actual zero restrictions if statistical methods are used for subset

modelling, however. The third possible solution to the singularity problem is to assume

a VAR or VECM with infinite lag order and letting the model order increase when more

sample information becomes available. In this approach the model order is assumed to go to

infinity with the sample size at a suitable rate. Relevant asymptotic theory was developed by

Lütkepohl (1988, 1996), Lütkepohl & Poskitt (1991, 1996), Lütkepohl & Saikkonen (1997)

and Saikkonen & Lütkepohl (1996, 2000) based on work by Lewis & Reinsel (1985) and
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Saikkonen (1992). The disadvantage of this approach is that the greater generality of the

models implies an inefficiency relative to the model with finite fixed order, provided the

latter is a proper representation of the actual DGP. For practical purposes, subset modelling

may be the best solution.

8.3 Impulse Response Analysis of the Example System

For illustrative purposes an impulse response analysis is performed based on the subset

VECM (16). Thereby we hope to account for the problems related to constructing bootstrap

confidence intervals. Because the estimated instantaneous residual correlations were found

to be small, it may be reasonable to consider the forecast error impulse responses. They

are shown in Figure 4 with standard percentile and Hall’s percentile confidence intervals,

based on 2000 bootstrap replications. According to the bootstrap literature the number of

bootstrap replications has to be quite large in order to obtain reliable results. Therefore one

may wonder if using 2000 replications is adequate. We have also computed CIs with 1000

replications and found that they are not very different from those based on 2000 replications.

Hence, 2000 replications should be sufficient for the present example.

Figure 4 about here.

The two different methods for constructing CIs result in very similar intervals for the

present example system (see Figure 4). The impulse responses are all quite plausible. For

example, an interest rate impulse leads to a reduction in money demand and in output,

whereas a money shock raises output and, in the long-run, tends to decrease the nominal

interest rate. Not surprisingly, shocks in all three variables have long-term impacts because

the variables are all I(1).

8.4 Forecast Error Variance Decomposition

Forecast error variance decompositions are related to impulse responses and may also be

used for interpreting dynamic models. The h-step forecast error for the yt variables in terms

of structural innovations εt = (ε1t, . . . , εKt)
′ = B−1ut can be shown to be

Ψ0εT+h + Ψ1εT+h−1 + · · · + Ψh−1εT+1,

so that the kth element of the forecast error vector is

h−1∑
n=0

(ψk1,nε1,T+h−n + · · ·+ ψkK,nεK,T+h−n),
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where ψij,n denotes the ijth element of Ψn (see Lütkepohl (1991)). Because, by construc-

tion, the εkt are contemporaneously and serially uncorrelated and have unit variances, the

corresponding forecast error variance is

σ2
k(h) =

h−1∑
n=0

(ψ2
k1,n + · · ·+ ψ2

kK,n) =
K∑
j=1

(ψ2
kj,0 + · · ·+ ψ2

kj,h−1).

The quantity (ψ2
kj,0 + · · · + ψ2

kj,h−1) is interpreted as the contribution of variable j to the

h-step forecast error variance of variable k. This interpretation is justified if the εit can

be viewed as shocks in variable i. The percentage contribution of variable j to the h-step

forecast error variance of variable k is obtained by dividing the above terms by σ2
k(h),

ωkj(h) = (ψ2
kj,0 + · · ·+ ψ2

kj,h−1)/σ2
k(h).

The corresponding estimated quantities are often reported for various forecast horizons.

Figure 5 about here.

In Figure 5, a forecast error variance decomposition of the German macro system based

on the subset VECM (16) is shown. It uses orthogonalized innovations obtained via a

Choleski decomposition of the covariance matrix. In Figure 5 it appears that the interest

rate dominates its own development as well as that of mt at least in the long-run, whereas

the gnpt variable is largely determined by its own innovations. This interpretation relies on

the point estimates, however, because the forecast error variance components are computed

from estimated quantities. They are therefore uncertain. Also, the ordering of the variables

may have an impact on the results. Although the instantaneous residual correlation is small

in our subset VECM, it may have some impact on the outcome of a forecast error variance

decomposition. This possibility was checked by reversing the ordering of the variables. It

turned out that for the present system the ordering of the variables has a very small effect

only.

9 Conclusions and Extensions

Cointegration analysis has become a standard tool in econometrics during the last two

decades after its introduction by Granger (1981) and Engle & Granger (1987). In this paper

some recent developments are reviewed. A small German macro system around a money de-

mand relation is used to illustrate the methodology. The example data have special features

for which new methods have been developed recently. In particular, they have level shifts

that have to be taken into account in unit root and cointegration testing and in modelling
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the DGP. Some recent tools for handling such data properties have been discussed. Also

methods for parameter estimation and model checking have been presented and applied.

A satisfactory model for the example data set is found. This model is then used to study

the dynamic interactions between the variables within an impulse response analysis and by

means of a forecast error variance decomposition. Some recent developments in using these

tools are also discussed.

In this review I have not tried to present all the interesting and exciting developments

of cointegration analysis over the last two decades. The present review focusses explicitly

on developments related to a specific example data set and on methodology to which I have

contributed. An interesting development that has not been considered is, for instance, the

analysis of systems with higher integration orders. Considerable progress has been made on

the theory for analyzing models of this type (see, e.g., Johansen (1995b, (1997)), Kitamura

(1995), Haldrup (1998), Paruolo (2000, 2002), Paruolo & Rahbek (1999), Boswijk (2000)).

Moreover, models for variables with seasonal unit roots have been analyzed (Johansen &

Schaumburg (1999), Ghysels & Osborn (2001, Chapter 3)). Generally these models are more

complicated than the I(1) case and the theory is not as complete as that of I(1) models. Not

surprisingly, there are also fewer applications.

Another generalization of the models considered so far is obtained by allowing the order of

integration to be a real number rather than restricting it to an integer value. For real numbers

d, one may define the differencing operator ∆d by the following power series expansion:

∆d =
∞∑
j=0

LjΓ(j − d)/Γ(j + 1)Γ(−d),

where Γ(·) denotes the Gamma function. With this definition, processes yt may be considered

for which ∆dyt is stationary for real values of d > −1. The concept of cointegration has

been extended to this type of fractionally integrated processes (e.g., Velasco (2003), Marmol,

Escribano & Aparicio (2002), Robinson & Yajima (2002), Breitung & Hassler (2002)). They

allow more flexibility with respect to the persistence of shocks to the system.

It is also possible to extend the linear VECMs by considering nonlinear error correction

terms. For example, the term αβ′yt−1 may be replaced by a nonlinear function f(β′yt−1)

or more generally by g(yt−1). Such extensions may be of interest because the implications

of linear models are not always fully satisfactory. For example, in a linear model a positive

deviation from the long-run equilibrium relation has the same effect as a negative deviation

of the same magnitude except that it has the opposite sign. Such a reaction is not always

realistic in economic systems, where, for instance, the reaction may depend on the state of

the business cycle. Models with nonlinear error correction terms have been proposed and

considered, for example, by Balke & Fomby (1997), Escribano & Mira (2002), Saikkonen
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(2001a, 2001b) and Lo & Zivot (2001).

Other forms of nonlinearities may also be considered. For example, nonlinearities may be

present in the the short-run dynamics in addition or alternatively to the error correction term.

For example, Krolzig (1997) extends Markov regime switching models which were originally

introduced to econometrics by Hamilton (1989), to systems of cointegrated variables.

Other extensions of the basic model include VECMs with finite order vector MA terms

(Lütkepohl & Claessen (1997), Lütkepohl (2002)) and models which condition on some of

the variables (Harbo, Johansen, Nielsen & Rahbek (1998), Pesaran, Shin & Smith (2000)).

To do a cointegration analysis it is usually not necessary anymore to develop the software

because some packages exist which can be used comfortably. Examples are EViews (EViews

(2000)), PcFiml (Doornik & Hendry (1997)), Microfit (Pesaran & Pesaran (1997)), CATS

(Hansen & Juselius (1994)), JMulTi (Lütkepohl & Krätzig (2004)). The latter program was

also used for the computations related to the example discussed in the present paper.
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berg, T. Teräsvirta, D. Tjøstheim & A. Würtz (eds), Nonlinear Econometric Modeling in Time
Series Analysis, Cambridge University Press, Cambridge, pp. 165–201.

Saikkonen, P. & Lütkepohl, H. (2000b). Testing for the cointegrating rank of a VAR process with
an intercept, Econometric Theory 16: 373–406.

Saikkonen, P. & Lütkepohl, H. (2000c). Testing for the cointegrating rank of a VAR process with
structural shifts, Journal of Business & Economic Statistics 18: 451–464.

Saikkonen, P. & Lütkepohl, H. (2002). Testing for a unit root in a time series with a level shift at
unknown time, Econometric Theory 18: 313–348.

Sims, C. A. (1981). An autoregressive index model for the U.S. 1948-1975, in J. Kmenta & J. B.
Ramsey (eds), Large-Scale Macro-Econometric Models, North-Holland, Amsterdam, pp. 283–
327.

Sims, C. A., Stock, J. H. & Watson, M. W. (1990). Inference in linear time series models with
some unit roots, Econometrica 58: 113–144.

Stock, J. H. & Watson, M. W. (1988). Testing for common trends, Journal of the American
Statistical Association 83: 1097–1107.

Velasco, C. (2003). Gaussian semi-parametric estimation of fractional cointegration, Journal of
Time Series Analysis 24: 345–378.

33



Table 1: ADF Tests for Interest Rate Series
deterministic no. of lagged test 5%

variable term differences statistic critical value
∆Rt none 0 −8.75 −1.94

2 −4.75

Rt constant 1 −1.48 −2.86
3 −1.93

Note: Critical values from Davidson & MacKinnon (1993, Table 20.1).

Table 2: Unit Root Tests in the Presence of Structural Shifts for gnpt and mt Using Four
Lagged Differences, a Constant, Seasonal Dummies and a Linear Trend

Variable Shift test 5% critical
function statistic value

gnpt dtTBγ −1.41 −3.03
exponential −1.36

mt dtTBγ −1.70 −3.03
exponential −1.69

Note: Critical value from Lanne et al. (2002).
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Table 3: S&L Cointegration Tests for German Macro System, Sample Period: 1975Q1 −
1998Q4

deterministic no. of lagged test 5% critical
variables terms differences H0 : rk(Π) = r0 statistic value
mt, gnpt c, tr, sd, shift 0 r0 = 0 6.86 15.92

r0 = 1 0.37 6.83

4 r0 = 0 4.91 15.92
r0 = 1 1.75 6.83

c, orth tr, sd, shift 0 r0 = 0 9.13 9.79

mt, Rt c, tr, sd, shift 0 r0 = 0 26.71 15.92
r0 = 1 0.00 6.83

c, orth tr, sd, shift 0 r0 = 0 22.98 9.79

gnpt, Rt c, tr, sd, shift 0 r0 = 0 8.26 15.92
r0 = 1 0.20 6.83

6 r0 = 0 8.42 15.92
r0 = 1 0.56 6.83

c, orth tr, sd, shift 0 r0 = 0 4.04 9.79

6 r0 = 0 9.36 9.79

mt, gnpt, Rt c, tr, sd, shift 0 r0 = 0 38.36 28.47
r0 = 1 9.07 15.92
r0 = 2 0.00 6.83

4 r0 = 0 19.58 28.47
r0 = 1 4.93 15.92
r0 = 2 4.53 6.83

c, orth tr, sd, shift 0 r0 = 0 33.62 20.66
r0 = 1 9.47 9.79

4 r0 = 0 20.14 20.66
r0 = 1 4.53 9.79

Notes: c - constant, tr - linear trend, orth tr - linear trend orthogonal to the cointegration relations,
sd - seasonal dummies, shift - shift dummy variable S90Q3; critical values from Lütkepohl &
Saikkonen (2000, Table 1) for models with unrestricted trend and from Saikkonen & Lütkepohl
(2000b, Table 1) for models with trend orthogonal to the cointegration relations. This table is
adapted from Lütkepohl (2004b).
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Figure 1: Seasonally unadjusted, quarterly German log real M3 (m), log real GNP (gnp)
and average bond rate (R), 1975Q1− 1998Q4.
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Figure 2: Deterministic terms and adjusted series used in unit root tests for log GNP series,
based on a model with four lagged differences, sample period 1976Q2− 1996Q4.

(Note: The figure is extracted from Figure 2.18 of Lütkepohl (2004a).)
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Figure 3: Chow test p-values for unrestricted VECM with cointegrating rank one, four lagged
differences, constants, impulse dummy and seasonal dummies for German money demand
system; sample period: 1975Q1− 1998Q4 (including presample values).
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Figure 4: Forecast error impulse responses of German macro system based on subset VECM
(16) with 95% standard (- - -) and Hall’s percentile confidence intervals (.....) (2000 bootstrap
replications).
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Figure 5: Forecast error variance decomposition of German macro system based on subset
VECM (16).
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