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Abstract
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1 Introduction

There is a relatively small but growing literature in political economics initiated by Hirshleifer

(1991, 1995), Skaperdas (1992) and Grossman and Kim (1995). Their models share four

common features. First, they postulate that con°ict arises from the choice of rational and

self-interested agents. Second, a well-de¯ned and enforced property right over, at least, some

goods do not exist. Third, the agents are assumed to be myopic in a way that they maximize

only the current payo®. Fourth, their model is static. This paper conducts the analysis of

con°ict by extending their static models to a dynamic one.

Hirshleifer (1996) takes an initial step towards a dynamic approach by recognizing succes-

sive iterations of the one-shot game, and focuses on the convergent point of such iterations (he

calls such a ¯xed point "a steady state"). Nevertheless, Maxwell and Reuveny (2005, p.31)

correctly point out that "However, this approach is not fully dynamic: it does not specify

equations of motion for any variables, time is not a variable in the model, and the condition

for dynamic stability is not derived based on standard dynamic analysis".

In response to such long-term desires, there have been several papers which attempt to con-

struct a dynamic variation of the one-shot con°icting game analyzed by the above-mentioned

authors. Gar¯nkel (1990) examines a dynamic model in which agents make choices between

productive and ¯ghting activities. She uses a repeated game setting where threats and punish-

ments are available. Existence of cooperative (or disarmament) equilibria can be established

using Folk Theorem arguments. Skaperdas and Syropoulos (1996) discuss a two-period model

of con°ict in which time-dependence is introduced by the assumption that second period re-

sources of each agent are increasing in ¯rst-period's payo®. As a result, `the shadow of the

future' may impede the possibilities for cooperation. In other words, competing agents en-

gage more in appropriation in order to capture a bigger share of today's pie. The equilibrium

solution concept we employ in this paper allows us to identify possible cooperative outcomes

as a result of decentralized decision-making by agents, without having to rely on the Folk

Theorem of repeated games or enforceable commitments. Nevertheless, since the one-shot

game is repeated every period due to the nature of the repeated game, it would be unsat-
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isfactory to describe true dynamic situations. More recently, Maxwell and Reuveny (2005)

construct a con°ict model with two competing groups in which each group's population and a

stock of common (natural)-resources both change over time. Since three non-linear di®erential

equations characterizing the dynamic paths of these stock variables do not allow an analyt-

ical solution, they resort to numerical simulations. These exercises reveal that mild con°ict

activity depresses the use of natural resources for production, thus possibly creating a Pareto

improvement compared to cooperative situations where there is no appropriate activity, and,

moreover, tends to reduce the volatility of those stocks through the transition. Although

their model generates other interesting insights, they still assume that agents are myopic.

The authors in the literature have called for a full dynamic and multi-period model of the

Skaperdas-Hirshleifer-Grossman and Kim-based literature which incorporates the behavior of

non-myopic agents who taking into account the consequences of their future actions, which is

also left as an open question in Maxwell and Reuveny (2005).1 The goal of this paper is to

accomplish this task.

We develop a forward-looking agent-based in¯nite horizon general-equilibrium model to

study the dynamic evolution of self-enforcing property rights. There are various ways of

extending one-shot, static models of Skaperdas, Hirshleifer, and Grossman and Kim to a

dynamic setting. Following their models, we ¯rst assume that the initial resource endowment

is ¯xed over time. This assumption would be defended either by interpreting the initial resource

endowment as a time or lobar supply, or by assuming the ¯xed population in order to keep the

model tractable. The relevant state variable in our dynamic model is a durable stock which is

produced using collective e®orts of all involved in the production process. This durable stock is

exhaustible or rival in the sense that one agent's use of the stock does diminish its availability

1More recently, there is another class of dynamic con°icting models that include, e.g., Gradstein (2003)
and Gonsalez (2005). There are several important di®erences between the models in these papers and the one
in ours. First, in their models a °ow of the output produced each period is subject to predation, while in
our model a stock variable is subject to predation. Secondary and more importantly, those papers investigate
the relationship between con°ict and economic growth in the standard growth model based explicitly on
the investment and saving decisions of a large number of economic agents. Hence, their models are mostly
concerned with the macroeconomic consequences, such as growth e®ects of insecure property rights. Since
our model is a straightforward dynamic extension of Grossman, Hershleifer and Skaperdas which allows for
static interaction among a small number of economic agents, it enables one to directly compare our results
with those in static con°icting models and thus to highlight the strategic role of appropriation among those
few agents in the intertemporal context.
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to other agents. Hence each of the agents is tempted by the immediate bene¯t attainable from

capturing the stock. Natural resources and land in primitive historical societies are examples

of such durable stocks.

This model structure allows to explicitly consider insecure market transactions. They

enter through the assumption that property rights are determined by the equilibrium level

of aggression or greed. The basic mechanism is the following. We model the incentives of

agents to exert e®ort in an attempt to defend their claims on the stock and challenge the

claims of others. All agents who succumb to the temptation reduce their help in production

of the common-pool stock to increase their e®orts to convert claims on the common stock into

e®ective property rights. More speci¯cally, agents derive utility (or a payo®) from owning

capital stock and, at every instant in time, choose how to allocate an endowment between

appropriation of the common-pool stock (creating property rights) and participating in the

production process to increase level of the capital stock in the economy. The production and

appropriation decisions made independently and noncooperatively by each of the contenders

jointly determine the evolution of the commonly accessible stock.

We present a tractable version of a di®erential game formulation of this model of con°ict

between several agents who attempt to appropriate a common-pool durable stock over an

in¯nite horizon. The solution concept employed is Markov perfect equilibrium, restricting

strategies to be functions of the current payo®-relevant state variable. Not all the strategies

that describe a solution of the intertemporal optimizing problem of an agent are Markov

perfect equilibria. The key to determining which describe equilibrium outcomes is subgame

perfection over the entire domain of a state variable. In our model, this requirement produces

a unique Markov perfect equilibrium strategy which turns out to be linear in a state variable.

This unique strategy has the following characteristics and implications. First, the solution

suggests that initially poor countries will exhibit an increase in appropriation as the aggregate

stock of the capital stock gets larger until a steady state is reached. Second, on the other

hand, in economies with an a²uent endowment of natural resources the `marginal gain' of

appropriation is high and agents substitute appropriation for production for a while until the

state variable reaches a threshold level. From that threshold onwards, agents choose to engage
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in production activity to some extent until a steady state is reached where the output of

production is only just su±cient to replace the stock of durable goods. This result relates to

the observation that rent-seeking activities in rich countries may result in deindustrialization

as suggested by the literature on the resource curse (e.g., Sachs and Warner, 1999; Auty,

2001).2 Third, our results also suggest that regardless of the di®erence in the initial levels of

common-pool endowment economies converge to the same steady state. There, property rights

are `partially' enforced in the sense that appropriation and productive activities coexist, so

that neither a totally peaceful (disarmed) equilibrium nor a full-¯ghting equilibrium emerges

as a long run outcome.

Fourth we identify the possibility that countries may reach di®erent long run equilibria

in a case where each of the contenders anticipates that the domain of the prize (=a state

variable) in the contest is restricted. We present the exact domain restriction required to

obtain Markov perfect equilibrium strategies leading to a multiplicity of equilibria. As a

result, the model predicts that some countries converge to a low-income steady state with more

unstable property rights (which is socially less desirable), and some converge to a high income

equilibrium with more stable property rights (which is socially more desirable).3 Neither of

the above-mentioned one-shot models has addressed this feature.

The organization of the paper is as follows. The next section describes the basic model.

Section 3 derives an e±cient solution (i.e., cooperative solution) as a reference path. Section 4

conducts comparative static analysis with respect to several principle structural parameters.

Section 5 concludes the paper.

2There is evidence that resource abundance in the de¯nition used by Sachs and Warner (1999) is associated
with civil war (e.g., Collier and Hoe²er, 1998; Hodler, 2005).

3Auty (2001) argues that experiences in di®erent countries are complex and diverse. Some countries like
Malaysia, Australia, Norway, Botswana and Canada appear to have used their resources judiciously, whereas
countries like Nigeria, Mexico and Venezuela seem to have squandered their oil windfalls. According to
Acemoglu et. al. (2001) the limiting force of con°ict is institutional quality as a key driver for economic
growth and prosperity.
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2 The Model

Consider an in¯nite horizon economy populated by  ¸ 2 agents who strategically interact.

Each of the agents derives utility from the consumption (or services) of a common-pool as-

set (such as land territories and natural resources) or (tangible and intangible) the stock of

durables. We want our model to capture the role of productive and aggressive activities with

the understanding that aggressive investment causes an inward shift of the aggregate produc-

tion possibility frontier. Accordingly, we use a setup where appropriation and production are

two substitutable investment choices. Speci¯cally, let an individual decide at each point in

time how much resources to devote for appropriation  ¸ 0 and production  ¸ 0. The

individual resource (e.g. time) constraint is:

 +  =  (1)

where  is the endowment of a ¯ll-in activity that is not subject to appropriation.
4 We will

set  = 1 for ease of exposition. The time arguments have been suppressed in this and all

subsequent equations.

The common-pool stock is subject to appropriation. The stock is generated by accumula-

tion of output. Output is produced with a linear production technology:

 (1     ) =
X

=1

 (2)

which captures the idea that higher productive e®orts by agents cause an outward shift of

the production possibility frontier for the economy as a whole. The output of production can

be stored to augment the common-pool stock. However, storage entails costs such that the

stock  evolves according to

_ =  (1     )¡  (3)

4The standard assumption that each agent has some essential property rights is implicit in this formulation.
Individual's labor supply is such an example. Maxwell and Reuveny (2005) further assume that labor supply
is growing over time as a result of the growth of population. However, in order to keep the model tractable,
we assume that the population of agents remains constant over time.
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where  2 (0 1) is the rate at which output will depreciate if stored for future consumption, _

denotes the change of  over time and  (0) ¸ 0 is the initial stock.

A main ingredient of the model is the con°ict technology which, for any given values

of 1     , determines each agent's probability of winning sole possession in obtaining the

stock  in a given period. To model this probability for agent , a natural assumption is that

the probability is increasing in aggressive investment of agent , the fraction of time player 

devotes to aggression, and decreasing in the sum of aggressive investment of all agents. A

plausible form of the con°ict technology is the Tullock contest success function (Tullock,

1980; Hirshleifer, 1991 and 1995; Gonzalez, 2006). In its standard formulation this function

reads:

 (1     ) =

8
>><
>>:




.³


 +
P

 6= 



´
for   0

1 for  = 0 8
(4)

where the parameter  captures the e®ectiveness of aggression. From the contest success

function (4) we obtain the relative success of contender  in the contest. Alternatively, the

contest success function (4) may be interpreted as a sharing rule, or ownership of assets that

depends on the respective e®orts of aggression. It is natural to assume in the analysis that

each agent has an equal access to the prize when agents do not engage in aggressive behavior;

hence the assumption that  (0     0) = 1 will be in force throughout the analysis.

The instantaneous expected payo® to each agent is given by  (1     ).
5 Each of the

agents chooses the streams of  and  to maximize the discounted value of total expected

payo®s subject to the feasibility conditions introduced in (1)-(4):

max


Z 1

0

 (1     )
¡ subject to

_ =
X

=1

(1¡ )¡ ,  (0) = 0 ¸ 0

0 ·  () · 1 for all  2 [01) 
5Alternatively, one may view the prize as °ow services, such as output or utility from the stock variable 

rather than  itself. In this case we have to introduce a concave function, say  () instead of  . This
complication does not a®ect our results at all.
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where   0 is the rate of time preference.

2.1 Solution Concept

We solve the di®erential game using the notion of a (stationary) Markov perfect Nash equilib-

rium, because we think that this equilibrium concept captures the essential strategic interac-

tions over time. Markov perfect strategies are decision rules such that each agent's decision is

the best response to those of the other players, conditional on the current payo®-relevant state

variable  (see, e.g., Chapter 4 in Docker et al., 2001). Markovian strategies rule out path

dependence in the sense that they depend only on the current values of the state variables

rather than strategy choices in history. As a result, it does not matter how one gets to a

particular point, only that one gets there.

Markov perfect equilibrium strategies must satisfy the Hamiltonian-Jacobi-Bellman equa-

tion given by:

 () = max
2[01]

"
 (1     ) +  0

 ()

(
X

=1

(1¡ )¡ 

)#
 (5)

where  denotes the maximum value agent  attributes to the game that starts at . Notice

that

2

2
 =  (¡ 1)  ( ¡ 1)¡ 2

32
  0 for

8
>><
>>:

 = 2 ^   0

  2 ^ 0    (¡ 2)
(6)

implying that the r.h.s. of (5) is concave in  2 [0 1]. We assume that   1( ¡ 1) in

what follows,6 guaranteeing not only that the second-order condition (6) holds but also that

the linear strategy of each agent, which plays an important role in the later analysis, is a

6Tullock (1980) assumes the same condition in his two-agent, rent-seeking game. Hirshleifer (1991, 1995)
and Gonzalez (2006) also assume that   1 in their two-agent games. This condition reduces to   1 when
there are two agents (i..e.,  = 2).
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nonnegative value. The function that maximizes (5) can then be derived from





 ¡  0
 ()

8
>>>>>><
>>>>>>:

= 0 =)  2 [0 1] 

 0 =)  = 1

 0 =)  = 0

(7)

the l.h.s. of which is evaluated for all  2 [0 1]. According to (7) each agent, when choosing ,

trades the marginal increase in expected payo® from an increase in appropriation against the

marginal loss in the discounted value of the future stream of payo®s which results from a

reduction of productive e®ort. If the payo® gain from an increase in  is larger than the

payo® loss implied by the decrease in  for all levels of , then agent  will rationally devote

all resources to appropriation. In contrast, the agent chooses  = 0 in cases where the

discounted marginal gain from productive investment exceeds the instantaneous marginal gain

from aggressive behavior for all levels of .

2.2 Equilibrium

We can then make use of (7) to characterize subgame perfect equilibria of the di®erential game.

Since we have started our analysis assuming identical agents, a natural focus is on symmetric

equilibria. The symmetry assumption allows us to drop the subscript  in the subsequent

discussion, and we will suppress this index unless strictly necessary for expositional clarity.

Let us ¯rst analyze interior solutions of . Di®erentiation of the interior ¯rst-order condi-

tion in (7) gives

 00 () =
X

=1

2


0() +




= ¡ (¡ 1)

22
0() +

 (¡ 1)
2

. (8)

At an interior solution of  () we may apply the envelope theorem to characterize 0 ().
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Using the symmetry assumption we obtain

0 () =

1


+
 (¡ 1)
2 ()

[(1¡  ())¡ (+ 2)]

 (¡ 1)
2 ()2

 (¡ )

. (9)

We will employ phase-plane methods to characterize the qualitative solution of the nonlin-

ear di®erential equation (9) and the associated Markov strategies.7 For this purpose we have

to identify the steady state locus where _ = 0, called 1 in the following. Let us denote by 2

the loci where 0 () approaches in¯nity, and by 3 the loci where 0 () equals zero in the

( ) space:

1 := f( ) : _ = (1¡  ())¡  = 0g

2 := f( ) : 0 () ! §1g (10)

3 := f( ) : 0 () = 0g

The steady-state line 1 is a downward-sloping, straight line in the ( ) space. It intersects

the vertical axis at the point (0 1) and the horizontal axis at ( 0). Turn to 2. Setting

the denominator in (9) equal to zero, we obtain a vertical line at ( 0). The locus 3 is

obtained by setting the numerator in (9) equal to zero. Solving for  gives the following locus:

 = ¡  (¡ 1)
1¡  (¡ 1) +

 (¡ 1)
1¡  (¡ 1)

+ 2


 (11)

Using 1¡ (¡ 1)  0, (11) shows that the straight line 3 has a positive slope and a negative

intercept on the vertical axis, as shown in Figure 1. Moreover, the point of intersection between

the straight lines 2 and 3, labelled , is situated in the nonnegative region of the ( )

plane:

( ) =

µ




 (+ ) (¡ 1)
[1¡  (¡ 1)] 

¶
. (12)

Note, however, that since point  may be located below or above the resource constraint (1),

7Although we have a full general solution to (9) later, we need to know the qualitative properties of 0()
in order to draw a diagram.
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Figure 2: Phase diagram when   1.
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the value of  may or may not be less than 1. Depending on this value, we can draw two

diagrams such as in Figs. 1 and 2.

It follows from (3) that any strategy  () above line 1 implies that  declines in time,

while any strategy  () below line 1 entails an increase of  over time.

Collecting the arguments we can illustrate an uncountable number of the hyperbolic curves

corresponding to the solutions satisfying the HJB equation (5) in Figs. 1 and 2. These ¯gures

display representatives of those integral curves that are divided into ¯ve types of the families

of strategies. Arrows on the families of integral curves ,  = 1     4 illustrate the evolution

of  over time. In particular, by direct integration of (9) and manipulation we can obtain a

general solution to (9):

 () =
(¡ 1)  (¡ )

+
 (+ )

 [1¡  (¡ 1)] (¡ )
+
 + (¡ 1)  (+ ) 3

 (13)

where 3 represents an arbitrary constant of integration. Setting 3 = 0 in (13) gives

 () =
 (¡ 1) (+ )

[1¡  (¡ 1)] (14)

It is easy to con¯rm by the well-established guessing method for a value function (see Ap-

pendix C) that strategy  stands for the linear strategy. Moreover, the left branch of the

linear strategy  to the left of the steady state line 1 starts from the origin, and then reaches

point  on the steady state line 1, while its right branch starts from any initial value 0  

(we do not here take into account the resource constraint (1)), then reaching point  also.

Moreover, it can be veri¯ed by substitution that this linear strategy also goes through the

singular point .

The left branch of the 1-family of strategies starts from the origin and reaches a point on

the steady state line 1, while its right branch starts from point ( 0) and reaches the same

point on line 1; therefore, those strategies never hit the horizontal axis. The left-branch of

the 4-family of strategies also starts from the origin, while its right-branch starts from any

initial value 0  , both of which reach the same point on line 1. On the other hand,
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when the 2- and 3-families of strategies start from any initial value 0  , the 2-family

of strategies approaches point ( 0), while the 3-family of strategies goes to plus in¯nity,

as illustrated in Figs. 1 and 2.

However, not all integral curves in Figs.1 and 2 are quali¯ed as Markov perfect equilibrium

strategies. There are three additional requirements which have to be met. The ¯rst prerequisite

is that strategies should not violate the resource constraint (1). This implies that  () should

be bounded to the nonnegative region below a horizontal line with intercept 1 in Figs. 1 and

2.

The second requirement is that strategies should cover the entire domain in a continuous

way.8 At ¯rst glance this requirement seems to eliminate all strategies ,  = 1     4, and .

But strategies can potentially be continuously extended either by the upper bound  = 1 given

by the resource constraint (1), or by the non-aggressive strategy  = 0 on the horizontal axis

(see Rowat, 2007). Both potential extensions are triggered by the corner solutions where the

equality in (7) does not apply. In light of these observations, some strategies of the 3-family

(that do not reach the resource constraint (1)) are immediately eliminated because they can

neither cover the entire domain by themselves nor be extended by any strategy in a continuous

way.

However, as shown in Lemma 1 in Appendix B, the non-aggressive strategy  = 0 on the

horizontal axis is eliminated. In addition, extending the 1- and 2-families of strategies by

the patching strategy  = 0 is not possible, since both extended strategies are discontinuous at

 = .9 In contrast, the 3-family and the 4-family of strategies cannot be continuously

extended by the patching strategy  = 1. The reason is that both are also discontinuous

at  = .

Turn to the linear strategy b, where the hat indicates those strategies extended by the

patching strategy  = 1. Since strategy b can continuously pass through point  in Fig. 1, the

8Tsutsui and Mino (1990), Itaya and Shimomura (2001) and Rubio and Casino (2002) restrict the state
space in order to generate multiple equilibrium strategies. In particular, Tsutsui and Mino treat the domain
of a state variable as endogenous to get di®erent stable Markov perfect strategies associated with di®erent
steady states. Unfortunately, this approach prevents comparison of payo®s between strategies.

9Since all of strategies converge point  while all the right branches of 1-strategies start from the origin
and tall the left branches of 1-strategies strait from  Those strategies never hit the horizontal axis except
the origin and point . Indeed, it is impossible to patch those strategies by strategy  = 0.
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coordinates of which are given by (12), strategy b is continuos over the entire domain [01).

This property is also obtained in the case illustrated in Fig. 2 where strategy b does not go

through point . Here, the patching strategy  = 1 instead of the interior strategy  will

cross locus 2 and thus strategy b is continuos over the entire domain of  in Fig.2 as well.

Taken together, only the extended linear strategy b survives as a candidate for a subgame

perfect strategy.

The third and ¯nal requirement is subgame perfection. We have to show that there do

not exist pro¯table deviations from strategy b. Strategy b is stable in the sense that from

an arbitrary initial value of  strategy b can reach the steady state point  in the long

run. As a result, the convergence towards the bounded steady state point  ensures that the

value function associated with strategy b is bounded. Armed with this fact, we outline in

Appendix B that the extended strategy b can meet the requirement of subgame perfection

over the global domain [01). This proof is essentially based on the application of Theorem

3 of Rowat's (2007). We summarize with the following theorem:

Proposition 1 Assume that the domain of the state variable  is given by [01) and

0 ¡ (+ )¡1 ¡ ¡1 (0)  0, (15)

where 0 is an arbitrary initial value of ,

 (0) ´
µ



+ 



0
¡ 

0

¶µ
0


¶¡ 


¡
µ


0
¡ 

0

¶µ
0


¶¡ +
[1¡(¡1)]

,

and  ´  [1¡  (¡ 1)]  (¡ 1)  ( + ). Then there exists a unique Markov perfect equi-

librium strategy that is linear in the state variable  and that supports the steady state equi-

librium

( ) ´
µ
 [1¡  (¡ 1)]
(¡ 1) + 


 (¡ 1) ( + )

(¡ 1) + 

¶
.

Proof. See the Appendix B.

Proposition 1 implies that a unique linear MP strategy exists, even in the case where the

domain is globally de¯ned. As a result, given any initial stock of , the economy approaches
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the steady state point  where the common-pool stock takes a positive value and individual

aggressiveness takes an intermediate value between zero and one. In this sense, (implicit)

`partial cooperation' can be seen as a best response to the risk of appropriation.

Although the su±cient condition for subgame perfection (15) appears to be complicated,

we can easily check that (15) holds in cases where 0 is su±ciently close to  and where 0

is su±ciently large (see (B8) in Appendix B). To gain further economic insights, we can give

a more restrictive but simpler su±cient condition than (15) (see Appendix B):

 ¸ + 2

(+ ) 
() 

 + + 
¡  (¡ 1)  0, (16)

which also ensures that condition 1 ¡  (¡ 1)  0. When  ¸  (= ), which is

illustrated in Fig. 1, condition (16) is clearly satis¯ed.

The intuition for Proposition 1 is best understood from the observation that each contender

will have a stronger incentive to engage in appropriation if the prize () is large. Consequently,

strategy  = 1 is more likely to be subgame perfect at larger values of . Moreover, in

view of (16) either the larger is the rate of time preference  or the larger is the rate of

depreciation , the more likely the ¯rst inequality in (16) is to hold and thus the lower is the

incentive to deviate from strategy  = 1. These results are clearly consistent with the intuition

according to which higher values of those parameters make the accumulation of the stock 

less attractive, discouraging the incentives to engage in production of the common-pool stock.

The e®ect of the e®ectiveness parameter  on appropriation is subtle in the following sense.

A higher  makes the contenders more aggressive (i.e., strategy  becomes steeper), so that

appropriation can reach an upper bound on the resource constraint (1) at lower levels of .

Since the resulting smaller  in turn makes ¯ghting activity less attractive when () is close

to , the subgame perfection of strategy  = 1 is less likely to hold.

We are now in a position to discuss the time pro¯le of b associated with the evolution of .

In a²uent economies where the level of the stock variable is su±ciently large, investment in

aggression reaches the maximum possible level (i.e.,  = 1) in ¯nite time. It then is decreasing

until the steady state  is reached. Put di®erently, in a²uent societies where there is a large
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amount of the common pool stock, a full ¯ghting strategy will be rationally and inevitably

chosen during the transition to the steady state. On the other hand, if the level of the initial

stock level is relatively low at the start of the game investment in aggressive behavior is

monotonically increasing toward the steady state  over time. That is, as the common-pool

stock  gets larger over time, the contenders will become greedier, because the marginal gain

of appropriation will be higher. In the long run (i.e., the steady state point ) the economy

will reach a situation where `partial cooperation' prevails in the sense that every agent chooses

to contribute to the production of the common-pool stock  to some extent.

3 Comparative Static Analysis

In this section we discuss the e®ects of a change in the model parameters on the transition

path of the linear strategy  as well as on the associated long-run equilibrium point . Con-

sider ¯rst the e®ects of a change in the productivity (or e®ectiveness) of con°ict technology.

The recent developments in computer networks and their applications mentioned in the intro-

duction are an example of technological change that potentially puts at risk the intellectual

property rights of the software and music industry. In the model, a change in the productivity

of the con°ict technology is captured by a change in . The shift of point  can be calculated

by di®erentiating (??) with respect to the parameter . This yields:




=  ( + ) (¡ 1)¢¡2  0




= ¡ (¡ 1) ( + )¢¡2  0

where ¢ ´ (¡ 1)  +   0. Although an increase in  does not a®ect the line 1, this

increase strengthens the intensity of appropriation associated with every level of the common-

pool stock  during the transition path, thus making the linear strategy (??) steeper. Since

the productivity of appropriation becomes more e®ective with higher , all competing agents

engage in more aggressive behavior in the hope of capturing more resources. This ¯nding is

quite intuitive, and is also consistent with the static con°ict models of Hirshleifer (1991, 1995).
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An increase in the number of agents augments the aggregate endowment in proportion

to , since each entrant provides one additional unit of the endowment. The larger aggregate

endowment will increase the payo® each agent can expect to obtain from a given investment

in aggression, thereby intensifying each agent's aggressive behavior and thus making the lin-

ear strategy  steeper. At the same time the amount of aggregate endowment devoted to

productive as well as to appropriation will be larger, which corresponds to an outward shift

of the aggregate resource constraint 1 (i.e., scale e®ect). Although these two e®ects to-

gether intensify individual appropriation, the long run e®ect on the common-pool stock  is

ambiguous:10




=  ( + ) ¢¡2  0




=

£
f1¡  (¡ 1)¡ g (¡+ )¡ 22

¤
¢¡2 R 0.

A higher depreciation rate causes a reduction in the level of the common-pool stock 

available to contenders, thereby discouraging appropriation. This negative e®ect on the prize

causes a clockwise turn of line 1 around point (0 1) (i.e., the aggregate resource constraint 1

moves inward toward the origin). At the same time, a higher  implies that the cost of

maintaining the common-pool stock is increased relative to the cost of aggressive behavior,

which in turn strengthens an incentive for investment in aggressive behavior, thus making the

linear strategy  steeper. Although these two e®ects on appropriation operate in opposite

directions, the following result indicates that the former e®ect will outweigh the latter e®ect

in the long run:




= ¡ (¡ 1) [1¡  (¡ 1)]¢¡2  0




= ¡ [1¡  (¡ 1)]¢¡2  0

A decrease of the subjective rate of time preference makes the linear strategy  steeper,

10This e®ect has been also found in Result 4B of Hirshleifer (1995).
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but it has no e®ect on line 1. Hence we obtain the following long run e®ects:




=  (¡ 1) [1¡  (¡ 1)] ¢¡2  0




= ¡ (¡ 1) [1¡  (¡ 1)] ¢¡2  0.

The economic explanation is that there is a tendency to spend less resources on aggressive

investment when contenders become more far sighted (i.e., smaller ). This result has appar-

ently not been addressed by Hirshleifer (1991, 1995) and Skaperdas (1992), who use the static

con°ict models. It stands in contrast to Skaperdas and Syropoulos's (1996) result in which the

higher is the valuation of the future (i.e., smaller ), the stronger is the intensity of ¯ghting.

The reason for this di®erence is that in their two-period's model agent's ¯rst-period expendi-

ture on appropriation increases agent's second-period payo®. Rather, our result is similar to

Gar¯nkel's (1990) Folk Theorem type result in repeated games where higher discount factors

(i.e., smaller ) make it easier to sustain cooperative outcomes. An interpretation of our result

is that long-sighted agents become less aggressive because they are more concerned about the

future. We may then summarize the discussion in the following proposition:

Proposition 2

(i) An increase in the e®ectiveness of aggression leads to a higher level of aggression and to a

lower level of the common-pool stock;

(ii) an increase in the number of agents leads to a higher level of aggression, but the e®ect on

the common-pool stock is ambiguous;

(iii) an increase in the depreciation rate leads to a lower level of aggression and of the common-

pool stock; and

(iv) a decrease in the subjective rate of time preference leads to a lower level of aggression and

to a higher level of the common-pool stock.
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4 The Cooperative Solution

We will characterize the explicit cooperative solution as a benchmark steady state in the

following. Assume an outside enforcer or centralized agency has the power to induce every

contender to execute its command. The cooperative strategy is one for which a centralized

agency chooses the in¯nite-horizon planning pro¯le of strategy  2 
+ at the outset of the

game so as to maximize
R1
0
¡ subject to _ = ¡P

=1  ¡ where  2 [0 1] for all .

Clearly this optimization yields a totally peaceful solution, that is,  () = 0 for  2 [01)

for all . The result is understood by noting that expenditure on appropriation is socially

wasteful in the sense that it causes a deadweight loss because of the non-productive use

of resources. This deadweight loss should be zero in the hypothetical case where a central

agency can directly control the allocation between productive and appropriation. As a result,

the superior authority should establish point ( 0) in the long run. Agents would bene¯t

from an enforced peaceful resolution because Pareto-ine±cient aggressive activity is completely

eliminated.

Combined with the comparative static results in the previous section, we obtain the fol-

lowing results:

Proposition 3 Assume that a centralized agency chooses an allocation between aggressive and

productive investment so as to maximize aggregate payo®. The resulting allocation dictates

that agents devote all resources to the socially productive activity to obtain the Pareto e±cient

point ( 0) in the long run. Moreover, a decrease in either the productivity of aggressiveness,

the depreciation rate, or the subjective rate of time preference moves the resulting long run

equilibrium closer to a Pareto e±cient one.

The nuclear nonproliferation treaty which deters the development of nuclear weapons

(i.e., aggressive technology) would be socially desirable in a way that makes the long run

outcome closer to the peaceful and e±cient one. Another example is patent law, which aims

at enforcing property rights on investment return and thus limits socially wasteful activities.

Patent law potentially prevents a rapid fall in the expected return from new innovation, which

would be a consequence of imitation by rivals. The increase in return on investment caused
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by secure property rights is approximately captured by the e®ect of a lower depreciation rate

in our model.

The problem with using the cooperative solution as a benchmark is that the socially at-

tractive steady state is not self-enforcing because it does not constitute a subgame perfect

(Nash) equilibrium. There is a strong argument that a necessary condition for self enforcing

agreements at every moment in time is that they can be established as a subgame perfect

equilibrium. There must exist other ways to realize socially desirable outcomes (or making

the long run equilibrium closer to the Pareto e±cient point ( 0)) without the need to

assume outside enforcement or compulsion imposed by a strong central agency. For several

reasons (see, e.g., Itaya and Shimomura, 2001), the domain of the state variable could be

restricted, which may generate a multiplicity of equilibria. This is a de¯ning characteristic of

dynamic games which has never been captured by the one-shot con°ict models. In the present

model, if the domain of  is restricted over the interval [0 ¹], where ¹ ( ) represents the

upper bound on the domain, we obtain an uncountable number of the 1- and 4-families of

strategies which are subgame perfect over that domain. These strategies lead to a continuum

of steady state equilibria. Figs. 3 and 4 draw a continuum of steady state equilibria as the

bold line segments.11 More importantly, it follows from Figs. 3 and 4 that more peaceful

(e±cient) transition paths and long run equilibria, as compared to the transition path of the

linear strategy b and the associated long run equilibrium point , could be possible:

Proposition 4 Assume (15) holds and that the domain of the state variable  is restricted

over the interval [0 ¹] with 0  ¹  . There exist uncountable many nonlinear Markov

perfect equilibrium strategies that constitute a continuum of steady states. When the domain

of the state variable  is restricted over the interval [0 ¹] with ¹  , there exists only the

linear Markov perfect equilibrium strategy that supports a unique steady state point .

When the domain of the state variable is restricted on the prescribed range stated above,

agents in (initially) poor economies may have an in¯nite number of choices to increase the stock

11Although the upper bound on the state variable domain, ¹, can be closer to (´ ) as much as
possible, this upper bound cannot coincide with . This is because at  the 1-family of strategies are
discontinuous.
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of the common-accessible stock since there exist an uncountable number of Markov perfect

equilibrium strategies emitting from the origin. One of those strategies (i.e., strategy b)

would lead the economy to point . But other options exist. Following any of the strategies

in the 1-family of strategies implies that the level of aggression increases (and then may

decrease) towards a continuum of steady states ranging over a proper set of the interval [0 ¹].

It is socially desirable to follow one of the less aggressive strategies and thus potentially realize

socially better outcomes in the long run compared to the steady state point  supported by the

linear Markov perfect strategy. As a result, agents have to be confronted with a coordination

problem in order to select the most e±cient strategy.

Accordingly, governments or central agencies can play dual roles in restricting the domain

of the state variable as well as in solving the coordination problem stated above. Multiplicity

entails that a window of opportunity is available for an anarchic society in the sense that the

equilibrium is not only predetermined by the capital stock 0. A coincidental start abstracts

from all means of communication and trust between agents. But agents have an interest in

avoiding the loss caused by aggression and may transcend their lack of con¯dence to achieve

the Pareto-dominant equilibrium. Benevolent governmental institutions might be important

devices for solving the coordination problem, such that the society in the best circumstance

is able to coordinate on the preferred among all feasible equilibria.

5 Conclusions

The ¯rst conclusion of this paper is that completely aggressive behavior is not necessarily a

rational strategy for an agent in anarchic situations. Rather, every agent will voluntarily and

uniquely choose `partial cooperation', in which each agent devotes his individual resource both

to productive and appropriation at the same time, even though agents act fully rational and

are guided by their self-interest. The primary driving force is the durability of the common-

pool stock in conjunction with the forward looking behavior of agents. These intrinsically

dynamic ingredients induce each contender to behave `partially cooperatively', even without

punishments and threats, unlike Gar¯nkel (1990). In other words, either if the stock depreci-
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ates completely each period or if contenders have myopic foresight, they are less motivated to

follow a cooperative behavior in producing a commonly-accessible good.

The second conclusion is that the domain of a state variable also plays a critical role in

determining the nature of the equilibrium in addition to the equilibrium concept, which has

not been addressed by the static con°ict models. Nevertheless, one may cast doubt on the pos-

sibility of restricting the domain in reality. We would like to provide further justi¯cations for

this argument. Tsutsui and Mino (1990) investigate how imposing the price ceiling generates

the multiplicity of equilibria in the game of dynamic duopolist competition where a market

price is a state variable. The supply of land or of natural resources are usually limited, which

inevitably restrict the domain of those stock variables. In addition to those natural upper

bonds governments or authorities are able to limit the availability of those stocks through

regulations or agreements. For example, the numbers of whales and other ¯shes that can be

caught is limited through international agreements or the number of some wild animals can be

controlled by setting the hunting season or an area closed to hunters. Setting the environment

standard also limits the state spaces of environmental quality and of accumulated pollutants.

In the political context, the number of voters can be viewed as a state variable and thus it is

restricted by government's law or constitution. In light of these observations the multiplicity

of equilibria then may be more causal than predicted by this theory. In the respective cases it

may be one of the primary functions of centralized institutions to play a critical role to resolve

such a coordination problem.

In addition to the above-mentioned role of the government, the results of the present paper

suggest that the government (or central agency) should also play the following roles in order

to achieve a socially desirable outcome, and thus move the long run outcome closer to the

more e±cient ones. To do this, governments should attempt to deter the development of

the con°ict technology, reduce the depreciation rate of common-pool assets or induce people

to have longer sight. Such structural or institutional reforms, including laws or institutional

schemes, could reduce the likelihood of aggression, and thus lead to peaceful and more e±cient

outcomes in the long run.

The model presented in this paper should be developed further in several directions. In

22



particular, introducing asymmetry among agents would enable us to compare the results of the

present model with those static models which do incorporate asymmetric agents. The `paradox

of power' (Hirshleifer, 1991) may be generated in such an asymmetric dynamic con°icting

model.

Appendix A: Derivation on the HJB equation

In this appendix we show how to derive (9) in the text. Assuming an interior solution and

solving (7) for each agent yields the optimal strategy  =  (). By substituting this optimal

strategy into (5), the HJB equation (5) associated with agent  is transformed into

 () = (1 ()    ()) +  0
 ()

"
X

=1

(1¡  ())¡ 

#
 (A1)

By di®erentiating (A1) with respect to  and applying the envelope theorem to the resulting

expression, we obtain

 0
 () =

X

=1




0 () + () +  00

 ()

"
X

=1

(1¡  ())¡ 

#

+ 0
 ()

"
¡

X

=1

0 ()¡ 

#
 (A2)

Substituting (7) and (8) into  0
 () and 

00
 () in (A2), respectively, and exploiting symmetry

yields

0 = (¡ 1)
·



 ¡ 




¸
0 () + ()+

·
2

2
0() + (¡ 1) 2



0()

¸
 [ (1¡ ())¡ ]

+



[ (1¡ ())¡ ]¡ ( + )




  6=  (A3)
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Since the assumption of symmetry further allows us to make use of the following simple

expressions:

 =
1






=
 (¡ 1)
2





= ¡ 

2


2

2
=  (¡ 1)  ( ¡ 1)¡ 2

32


2


=
2 (¡+ 2)

32
 (A4)

we substitute those expressions into (A3) yielding

0 =
¡ 1
2

[¡ ¡  (¡ 1)]0() + 1


+

 (¡ 1)
32

[ (¡+ 2) +  ( ¡ 1)¡ 2] [ (1¡ ())¡ ] 0()

+
 (¡ 1)
2

[ (1¡ ())¡ ]¡ ( + )
 (¡ 1)
2

 (A5)

Further rearranging (A5) gives rise to (9) in the text.

Appendix B: Subgame Perfect Solutions

To prove the existence of Markov Nash equilibria we apply a su±ciency theorem stated in

Theorem 3 of Rowat's (2007). To do this, we ¯rst have to show that the strategy is feasible,

which is de¯ned in De¯nition 1 of Rowat's (2007). Although it may be appropriate to dis-

tinguish between the value function associated candidates strategies and that associated with

the well-de¯ned strategies like those of Rowat's, it is omitted for the sake of simplicity but

with understanding that solutions to has to pass the further tests to qualify for an equilibrium

strategy satisfying the properties stated in the text.

Lemma 1 The strategy () = 0 for  2 [01) is not an equilibrium strategy.

Proof. When () ¡  0
 ()  0, it follows from (7) that  = 0. In this case, the
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HJE equation (5) becomes

 () =
1


 +  0

 () (¡ )  (B1)

By integration and imposing symmetry, we have

 () =
(¡ )2 [+ (+ 2)]

 (+ 3) (+ 2)
+ 1 (¡ )¡


  (B2)

where 1 represents a constant of integration. When 1 6= 0, lim
!

 () = 1. This implies

that the strategy () = 1 is not an equilibrium strategy whenever 1 6= 0, because the value

function (B2) associated with this strategy is unbounded at  =  and thus the strategy

the strategy () = 1 ceases to be continuous at this point.

Consider the case where 1 = 0. In this case the derivative of the resulting value function

with respect to  is given by

 0 () =
¡ 

 (+ 3)

·
(¡ 3)¡ 2

+ 2

¸
 (B3)

Comparing (B3) with

lim
!0




 = lim

!0
 (¡ 1)
2

 ! 1 for   0 (B4)

implies that inequality ()   0
 () never holds except for  = 0. In other words,

the strategy 0() = 0 is not an equilibrium strategy for  2 (01).

Lemma 2 The strategy () = 1 for  2 [01) is an equilibrium strategy.

Proof. When () ¡  0
 ()  0, it follows from (7) that  = 1. In this case, the

HJE equation (5) becomes

 () =
1


 +  0

 () (¡)  (B5)

By integration and imposing symmetry, we have
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 () =
¡




h


+
 + 2 (+ )

i

 (+ )
 (B6)

where 2 represents a constant of integration. When 2  0 lim
!0

 () = ¡1, which is

impossible. So we consider the case where 2 · 0. Di®erentiation of (B6) with respect to 

yields

 0 () =
1¡ 


¡

+
  (+ ) 2

 (+ )
 (B7)

On the other hand, setting  = 1 in (A4) yields




 ´  (¡ 1)

2
 (B8)

In order to compare (B8) with (B7), we de¯ne

 () ´ 


 ¡  0 () =

 (¡ 1)
2

 ¡
1¡ 


¡

+
  (+ ) 2

 (+ )
 (B9)

where if 2  0, then lim
!0

 () = ¡1 and lim
!1

 () = +1 while if 2 = 0, then lim
!0

 () =

0 and lim
!1

 () = +1. Moreover,

 ()


=

 (¡ 1)
2

¡
¡



µ
¡+ 



¶
¡

+

¡1 (+ ) 2

 (+ )


=
 (¡ 1)

2
¡  (+ )

2
¡

+2
 2  0

When 2 = 0, the ineequaity holds. Since  () is increasing from ¡1 to +1, there exists a

value of ¤ such that since  (¤) = 0 depending on a value of 2.

Appendix C: Linear Strategy

We will show below that (14) represents a linear strategy. Under symmetry, rewrite the HJB

equation (5) as follows:
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 () = max
2[01]

[ (1 2  ) +  0() f (1¡ )¡ g] . (C1)

Suppose that the value function is linear, that is,  () = +, where  and  are unknown

constants. Substitute this hypothetical value function into the above HJB equation to get

 [+] = max

·
1


 + f (1¡ )¡ g

¸
 (C2)

Substituting further the (interior) ¯rst-order condition (7)  that is,  =  (¡ 1)2 into

 in (C2), we obtain

+  =
1


 +

½


µ
1¡  (¡ 1)

2


¶
¡ 

¾


Further rearrangement gives

¡+

·
 ¡ 1


+
 (¡ 1)


+

¸
 = 0

which is equivalent to

¡ = 0 and  ¡ 1


+
 (¡ 1)


+ = 0. (C3)

Solving the above simultaneous system of equations in terms of  and  to yields

 =
1¡  (¡ 1)
(+ )

.

Further substitution of this expression into the second equality in (C3) yields (14).
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