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Abstract

Models on enterprise valuation show that the effective or marginal tax rate
(ETR) increases linearly with the debt ratio, implying that tax benefits from
debt are very important. Empirical research has repeatedly emphasized that
this result cannot be sustained, and that tax benefits are in reality much less
relevant to valuation. It is an open question whether this impression can also
be maintained within a theoretical model.

All theoretical models so far assume that the tax rate is constant and identical
for gains and losses. In this paper, we attempt to analytically determine the
value of a tax shield assuming that gains and losses are taxed differently. We
want to precisely determine the impact of a non-constant tax rate on the value
of the tax shield. Previous research could only integrate this asymmetry by
employing empirical methods and simulation studies, as an analytical solution
had not yet been presented.

Looking at a very popular financing policy we are able to present a closed-
form solution for the effective tax rate. Our results reveal that this value,
instead of being a linear function of the debt ratio, is rather concave,
sustaining repeated empirical observations. However, our results also show
that the “power” or “strength” of this concavity is not enough to explain the
empirical results concerning the impact of the tax shield. Therefore, adding an
asymmetric taxation is not enough to determine the empirically observed
puzzle of tax shield valuation.

Keywords

http://eproofing.springer.com/journals/printpage.php?token=6xcjryyl9zsX1Bw3sjVK4VOMT_FspCqK 1/19



104.2017 e.Proofing

JEL-Classification

1. Introduction

How important are the tax benefits from debt? Using formal models, this
question was raised and answered as early as Modigliani and Miller (1963)
using a very simple financing policy (constant debt). Later Miles and Ezzell
(1980) were able to give a closed-form solution for another financing policy
(constant leverage ratio) that remains one of the most popular assumptions in
finance today. Then, research moved to empirical and simulation studies.

The literature has in particular looked at the ratio of tax shield value and
enterprise value of a levered firm to epitomize the influence of a corporate tax on
firm value. This ratio sometimes is called “marginal tax rate” (also MTR) in the
empirical literature. Using this term in our model would be rather confusing,
given that the tax shield is a tax benefit and given that we analyze the entire tax
benefit and not a marginal surplus. To be precise, we will analyze a coefficient
that measures the present value of all future tax shields relative to the present
value of all the future income, given that the company is levered (see Eq. 4
below). Hence, we will denote it as “effective tax shield ratio” ETR.

Looking at the theoretical results above, we identify a common element. In
Modigliani-Miller’s as well as Miles—Ezzell’s case the ETR is linear in today’s
debt ratio (see below). If we use the concept of elasticity the immediate result is
that the tax benefit has an elasticity of one with respect to the debt ratio. This
implies that taxes are very important when valuing companies and such results
should be empirically observed, in particular when tax rates are changing.

And this is where the issue gets interesting. Many papers have repeatedly argued
that the effect of debt on the value of the tax shield is much less than both
theories — Modigliani-Miller or Miles—Ezzell — predict. Myers et al. (1998) have
argued that taxes are of third-order importance in the hierarchy of corporate
decisions, hence much less than the model’s presage.

Many reasons can be mentioned (financial flexibility, use of non-debt tax shields,
pecking-order theory, target ratings of rating agencies, costs of financial
distress), but one idea immediately comes to mind: Until now, in any analytical
model where corporate taxes are introduced, gains and losses are treated
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symmetrically. But the treatment of gains and losses differs considerably across
national tax code regulations and is usually not symmetric. Many countries grant
loss carry-back and offer schemes for loss carry-forward.! These accumulated
tax losses can be quite enormous, as Sarkar (2014) has emphasized.” Losses and
non-deducted interest can be restricted by the amount of tax-deductible losses to
a certain proportion of current-year profits or may be ultimately lost because a
substantial amount of shares of a loss making firm is transferred to a new
owner.>

If, for example, losses cannot be imputed at all but gains are subject to tax this
will have an impact on the value of the tax shield and hence also the elasticity.
We would expect that the influence is of an order less than one. Up to now this
result could only be verified using simulation models or empirical studies;
particularly worth mentioning are Shevlin (1990), Graham (1996a, 1996b,
2000, 2003, 2006), Graham and Mills (2008), Graham and Kim (2009), Blouin
et al. (2010). The effect of a different taxation of gains and losses (so-called “tax
convexity”) has been analyzed, for example, in Sarkar (2008 ) using a
continuous-time setup. Sarkar was only able to simulate first results. Koch
(2013, Part E) thoroughly discussed the weaknesses of such simulation studies
and why we cannot relay on simulations alone: Koch shows that the estimation
of marginal tax rates using a random walk approach involves a huge
measurement error. With simulations, one must rely on few numerical values to
deduce structural statements for all possible numbers.

This is the point where our paper continues. Our aim is to present an analytical
model where gains are taxed differently than losses, in one case even presenting
a closed-form solution for the value of the tax shield. Our approach clearly
shows that the elasticity of the ETR with respect to the debt ratio is less than one,
pointing in the right direction. In our examples, the value of the tax shield turns
out to be a concave function of the leverage ratio.

We have already mentioned the consensus that the value of the tax shield is of
less importance for corporate decisions. It will turn out that theoretical results
will support this concord. Although the ETR is not linear in the debt ratio,
substantially lowering the tax shield compared to the symmetric case turns out to
be challenging. For this to be the case rather unrealistic assumptions are
required: For example, the cost of capital would have to be very far away from
the riskless rate. In the end, our paper shows that (as in the empirical and
simulation literature) formal models so far cannot provide a convincing answer
why tax shields are so low.

2. Assumptions
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We assume a market with the usual properties. There is a risk-free asset with
interest rate ry which, for simplicity, is assumed to be constant over time. The
market is free of arbitrage and hence there 1s a risk-neutral probability measure Q
such that any claim can be evaluated using the discounted Q -expected cash flow
of that claim.”

The firm we want to consider has unlevered pre-tax cash flows that are
auto-regressive,

CF' = CF'_ (1 + ¢,) (1)

for all # > 0 .° The random variables ¢, are assumed to be independent and
identically distributed (iid), with the expectation of zero and satisfy ¢, > —1 .

Given these assumptions, the price V! of an unlevered (post-tax) cash flow
stream (s=1r+1,...) with a tax rate 7 is given by the sum of its Q -
expected and discounted value:

L wa Epld -1 - CFY 2(2)
Vi=2 (I +ry

=1

7 1s a firm income tax rate, cash flows (instead of accounting incomes) are
subject to taxation. We ignore personal income taxes in order to keep our model
tractable.’

The unlevered company has after-tax cash flows of |(1 — T)CFM; . The levered

company can deduct taxes if there are no losses. Hence, its after-tax cash flow is
7

CF! = CF' = (CF* = ;D1 "

This gives a tax shield at time ¢ of

TS, : = CF' —7(CF' = rsD,y)" = (1 — ))CFY 3(3)
. TI'th_l if CFV? > rth_l
| CF" else.

= Tl’Ilil’l(CF';, Vth_l).

In our analysis we observe cases where the cash flows can take values smaller
than the required interest payments, which would usually mean a default of the

http://eproofing.springer.com/journals/printpage.php?token=6xcjryyl9zsX1Bw3sjVK4VOMT_FspCqK 4/19



104.2017 e.Proofing

corporation. In order to be able to work with such cash flows we follow the
assumptions in Kruschwitz and Loffler (2006, Chap. 2.2.4). There, it is shown
that default (under very mild assumptions) does not change the valuation
equations.

Lastly, we assume that the capital costs of the unlevered firm are constant over
time.® From this, for the unlevered company we immediately obtain

_ (I -7 CF/

v/ k

Introducing debt, the now levered company will use an amount of debt at time ¢ .
An equation applies to the valuation of this company, which is quite similar to
Eq. (2). However, its value |V}}| will be determined by the cash flows of the
levered firm. Before we focus on two different types of financing policies that
play an important role in the theory of business valuation a general result is
almost self-evident: The value of today’s tax shield is concave given any future
debt level D, .” This result will now be amplified using the following two
financing policies:

Fixed leverage ratios: The first financing policy is
characterized by the fact that company management
fixes deterministic leverage ratios [, for the future. This
is well known in the literature as it is the prerequisite
for using WACC in firm valuation, see Miles and Ezzell

Fixed-leverageratios (1980, p. 722). Because the future values of the

indebted firm V! are stochastic, the same applies for the
future amounts of debt, . For simplicity,
assume that the future leverage ratio is constant over
time, [, = [y (Vt > 0) .

Fixed amounts of debt: The second financing policy has
management fixing the future amounts of debt, D, ,
deterministically. For convenience, assume that this
amount remains constant over time, D, = D, (V¢ > 0) .

Fixed-amounts-of-debt Modigliani and Miller (1963) discussed this type of
policy. As the future values of the indebted firm are
stochastic, then the future debt ratios of the firm must
also be stochastic under this financing policy, |

l, = Do/VZ :
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ETR is finally being defined by

ETR =1 20 9
: )
VO

We have already mentioned that different definitions have been suggested in the
literature to capture the effect of asymmetric taxation. Shevlin (1990) as well as
Graham (2003) consider a “corporate marginal tax rate ... defined as the change
in the present value of the cash flow paid to (or recovered from) the tax
authorities as a result of earning one extra dollar of TI [tax income] in the
current period” (see Shevlin 1990, p. 1). Analogously, Graham and Kim (2009)
write that the “£TR [marginal tax] rate measures the present value tax
consequences of earning an extra dollar of income today” (p. 416). As can be
seen our definition is in line with these descriptions.

We are interested in closed-form solutions for the ETR, particularly if gains and
losses are taxed differently.

3. Main Results

3.1. Financing Policy with Constant Leverage Ratios

First assume that firm management follows a financing policy with a
deterministic and constant leverage ratio, Iy = [; = ... = [. This case was
addressed by Miles and Ezzell (1980). The result is

l+k r
(-7

- Lzl )Vl =vH,
1+I'f k1>0 0

where £k is the cost of capital of the unlevered company. It is straightforward to
determine the E7R if gains and losses are taxed symmetrically:
1+k 17 5(5)

1+7‘f ?T.

ETR symmetric —

The derivation of a closed-form equation for the ETR under asymmetric taxation
is harder. Assume that losses cannot be imputed at all. Let WACC represent the
weighted average cost of capital and WACC = (1 — 7) CF"/V!| for some . We
get the following result.'’
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Proposition 1 (Asymmetric Taxation of Gains and Losses) If gains are
taxed, while losses are not, then WACC is not stochastic and even constant.
Furthermore,

1+kr rel (1 —1) 6(6)
ETRaSymmetric = —_f Tlf (f—> >

1 +7r k WACC

where f(-) is a monotonically decreasing function with values between O and

1.

Comparing equations (5) and (6) with each other reveals an interesting fact. The

ETR differ from each other only by the factor of f (%) and
ry 1 (1=7)

0<f (W) < 1 must hold.
Consider an example. Assume that g, regarding Q is uniformly distributed on
the interval [—1, 1] ; calculating the function f(.) for this case yields'!

fo)=1- %, xe (1]

Fig. 1 shows the functional relationship between the ETR and the leverage ratio,
its main influencing factor. It is easy to see that ETR under symmetrical taxation
1s a linear function of the debt ratio, while it is a concave function under
asymmetric taxation.

Fig. 1
ETR under constant leverage ratios (k=6% , ry =5% , 7=30% ) with ¢,
regarding Q being uniformly distributed on [—1, 1] . The dotted line gives the

ETR when gains and losses are taxed symmetrically, the straight lines shows the
ETR if losses cannot be imputed

ETR .
. SYmmelric tax

asymmelric lax

20% —

10% —

30% 100 %

Nevertheless, we motivated our approach with the empirical observation that the
value of the tax shields does not seem to be very important when valuing
companies. Introducing asymmetric taxation does not provide a conclusive
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answer to that puzzle. Even our example shows that producing significantly
smaller tax shield with asymmetric taxation compared to the symmetric case
comes at the cost of unrealistic assumptions. If, in our example, the cost of
capital k is increased to a reasonable level ETR symmetric & ETRsymmetric T€SUlts.
This example supports the claim that also in a theoretical model an asymmetric
taxation is not the sufficient answer why taxes are of less importance in
corporate decisions.

The example already shows that asymmetric taxation hardly explains why
“typical conditions” usually result in a rather small tax shield. Looking at the
argument of the function f(-) carefully proves to be helpful. It can easily be seen

ry 1 (1=7)
that S Tee

f(x) approaches 1 . This result can formally be stated as follows: !

turns out to be quite a small number and for small x the function
2

Proposition 2 If

di
WACC

CF"
[(1 —7) < inf — 2!
t CF;

/ AN

= 1|, and asymmetric taxation cannot affect the

141 Y
TF T {I—1)

applies, then

value of the tax shield.

If the growth rate of cash flows is not negative the right hand side approaches
one. With negative rates it may be less than that. But it should not decrease too
much under normal conditions. On the left hand, however, we have an expression
which, under ordinary circumstances, is clearly less than one and often very
small. Hence, Proposition 2 will regularly hold."’

3.2. Financing Policy with Constant Amounts of Debt

Now assume that the firm follows a financing policy with deterministic and
constant amounts of debt, Dy = D; = ... = D . The future values of the levered
firm are stochastic. Hence, due to [, := D/V/ the future leverage ratios are
stochastic as well. By contrast, the previous leverage ratio was a number at any
future time ¢ .

Under symmetric taxation the value of the levered firm at each time is
Vi=Vv'+1D,

From this, immediately
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Vi-vy D _

These terms are stochastic for any ¢ > 0 . Only the current ETR (i.e.,att =0 )
is deterministic. Under symmetric taxation of gains and losses the ETR at time
t = 0 is deterministic and is described as

ETRsymmetric =7l. A7)

The result is different if gains and losses are taxed differently.!*

Proposition 3 (Asymmetric Taxation of Gains and Losses) If gains are
taxed, while losses are not imputed at all, then the ETR at time t = 0 is
deterministic. Depending on the debt, ETR attains a value between tly and
—_ ; the greater the amount of debt, the greater the ETR.

I+7 ’

The first value z/y materializes if D is sufficiently small. The second value -
1

T - Unfortunately, we do not arrive at a closed-form solution for
the ETR if D yields results that are located between 7/, and ﬁ :

results if [y >

Asymmetric taxation is, of course, without any meaning if ICF‘ > ryD,| holds.
Obviously, symmetric and asymmetric taxation result in the same tax shields.'”

Consider an example. The cash flows of the company follow a binomial tree as
shown in Fig. 2, with the initial value CFj = 1 and the growth factors u = 1.0
and d = 0.9 . The cost of capital is given by k = 5% , the risk-free rate is

1rr = 3% , and the tax rate is 7 = 60% . Then the risk-neutral probabilities can be
determined using option pricing theory.'°

Fig. 2

Binomial tree of cash flows in the second example
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d CF;
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Calculating the E7TR as a function of today’s leverage ratio [, gives the result
shown in Fig. 3. It is clear that beyond a certain amount of debt the E7R no
longer increases, because the resulting losses can no longer be offset against
taxes. Again we see that ETR is a concave function of debt under asymmetric
taxation and a linear function under symmetric taxation. This agrees with
empirical results.

Fig. 3

ETR under constant amounts of debt (k=5% , r,=3% , 1=60% ,
), when cash flows follow a binomial tree as in figureFig. 2 with y = 1.0 and
d =09 . The dotted line gives the ETR when gains and losses are taxed
symmetrically, the straight lines shows the E7R if losses cannot be imputed

ETH
G0 % .« Symmmetric
40% - - ,
. asymmelric
20% - e
— I
508 1008

4. Conclusion

Evaluating a firm requires a lot of information, including the value of the firm’s

ETR. In the past 25 years, there have been articles on the estimation of ETR
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under asymmetric taxation (gains are taxed, losses are tax-free), but all papers
published so far work with empirical methods and simulation studies. This paper
is the first to attempt an analytical determination of the E7R and our findings for
two popular financing policies are summarized in Table 1.

Table 1

Financing policy Losses are taxed ‘ Losses cannot be imputed
. ) I+k 7 1+k TF el (1-1)
Fixed leverage ratios el e <W
Fixed amounts of debt 7l tly =

Empirical studies that recognize a different tax treatment of gains and losses
indicate that taxes are less important in firm evaluation than previously implied
by theoretical papers. Although in our examples the differences between the
symmetric and the asymmetric tax shield valuation can be substantial, with a
constant leverage ratio in realistic cases these differences turn out to be low. And
we assumed that losses and non-deducted interest are ultimately lost and can be
carried neither forward nor backward — in the latter case timing effects come into
play that will reduce the differences further. Our paper supports the claim that
asymmetric taxation is not the major reason why taxes are of less importance in
business decisions at least in the case of a constant debt ratio. This has not been
shown in analytical models so far.
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5. Appendix

5.1. Proof of Proposition 1

From Eq. (3), using Eq. (2), the value of the levered company is

o i Eg [(1 = ©)CF* + z min(CFY, V! )IF,]
t 1+ re)ysTt

s=t+1
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or by employing the stochastic and time-dependent variable

(1 — 17)CFY} AH(AL)
WACCy := —
Vi
el (1-7)
y i Eg |(1 = OCF! + tmin(CFY, fre" CFL IF; |
t s=t+1 (I rpp
It follows from Kruschwitz and Loffler ¢ 2045 )Prepesition2(2015, Proposition

2) that there must be a unique solution. However, it is not obvious how to
determine that solution. Claiming that

(1 — 7)CF" A2(A2)
Vi

WACC =

is deterministic and constant will prove to be correct. From our first assumption
we get

CF' = CF'_, (1 + &)

for an 1id variable g, . Using Eq. (A2), insertion yields

1 ) Eo [r min(CF_, (1+e), =" cpr. ] H0(A3)
Vi =VI+Y2 e
Q[CF”;_l min(1+ex,%> ‘ P,]
= V” + TZS +1 (1+rf)s_t .

The random variables

CF' | = CF{(1 + &)1 + &) - (1 + &_1)

N

and

. rrl(1 -1
min { 1 + &, ———
WACC

are independent of each other. Under this condition, the expectation of the
product equals the product of the expectations. Hence using

x = (rp [ (1 = 7))/WACC yields

11H(A4)

http://eproofing.springer.com/journals/printpage.php?token=6xcjryyl9zsX1Bw3sjVK4VOMT_FspCqK

12/19



10.4.2017

e.Proofing
. rf [ (I-7)
1 Eg[CF!_| | ] Eg [m1n<1+€s,w)lf}]
— u
Vt V +7 Zs =r+1 (1+rf)s—t
_y 1 Eol(=0CF 7] Eo|min( 22,1 )7,
+7 X1 Tace (477~ '

We now focus on a function

l1+e¢

+ l,1>|Fsl’
X

r>s

7 =pes Eg |min (

for x > 0 . This function is dependent on three terms, namely x , the information
F, , and the random variable g, . The latter being iid, this is an unconditional

expectation that depends only on x . Therefore

1+ ¢

=)

must hold. Now it can easily be shown that when x is small,

fx) =Ep lmin (

) 1
lim f(x) = Eg lmln <lim +€t,1>] =1,
x—0 x—0 X

because ¢ > —1 , and when x 1s large

lim f(x)

X—> 0

= E, [min(lim 1;&,1)] =0.

The function is monotonically decreasing with x .

We can now determine the tax shield using the newly defined function |

f ( 'f“L,A\:,,,” ) = 1|. Inserting the term into Eq. (++A4) yields
l Eo[(1=0CF",IF,] Eg hm(%,l)] +2(A5)
Vl =V 4+ T¥ oo ’ rp (-0
t -t WACC s=t+1 (1477
" ry 1 ry 1 (1=7) o  Eo[-0CF 7]
=Vi' + wace WACC s=t+1 e
(I4rp)
_ vsu el re I (1-1) (1-7)CF!+VH
= Vi' + Wace < WACC T+7

This is a closed-form equation for the tax shield.

This result is based on the mere assumption of WACC being deterministic and

constant. If we can trust this result, our assumption was justified. We have to
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show that if there is a constant and deterministic WACC, there is a unique
solution. To this end, insert the capital costs equations into Eq. (12A5):

(l—T)CFt":(l—T)CF';_i_ re l ] <rfl(1—r)> (

WACC k WACC (1 + ry) WACC k

1+l>(1—r)CI

This can easily be transformed to

(1 -
WACC = k - 1+krf71f<u> .
I+7 WACC

This corresponds to the adjustment formula of Miles and Ezzell (1980) except
for the term f(-) .

To assure ourselves that a unique solution exists for WACC, consider two cases.
For WACC — 0 the left-hand side (LHS) of the equation goes to zero, while the
right-hand side (RHS) goes to k > 0 . So the RHS is larger than the LHS.
Assuming, however, that WACC — oo , the LHS goes beyond all limits and is
positive, while the RHS remains finite. Because of the monotonicity of the
function there can be only one unique solution for f(-) . The ETR results easily
from Eq. (42A5):

CF/
A WACC
ETRasymmetric= 1 - CF" =1- X
WACC
1+k rr rrl(1 -1
= — T lf _— .
T+7r k WACC

This completes the proof.

5.2. The example with constant leverage ratio and proof of
Proposition 2

The function f(-) from

X

f&x) =Ep lmin<1+8t,1>],

can be determined if ¢ is regarding Q uniformly distributed on [—a, a] . Then

f(x)=[:min<1:8,l>%de.

We have, since x > 0
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1+ ¢
X

>] &< x—-1<e

Distinguish two cases. First, if x — 1 < —a then the integral is given by

a
f(x)=/_ lo-de=1.

a

The second case corresponds to —a < x — 1 < a . Then, the integral is given by

x—1 a
1+ 1 1+ 1
f(x)=/ min( 8,1>—a’8+/ min( ¢ 1>—d€.
—a X 2a 1 X 2a

This can be simplified

x—1 a
l1+el 1
7 / x 2a det [_1 2

_1 1 +(1—a)2
_2 2a 4ax X

Finally, Proposition 2 must be proved. From the assumptions we have

WACCl(1—1)<1nfC£;; == WXCCZ(1—1)<(1+£,).
With x = WACC [(1—1) we get
I < 1+ & ,
X
and the integral is given by
1+ ¢

f&x) =Eg lmin ( , 1)] = Ep[l] = 1.

This was to be shown.

5.3. Proof of Proposition 3
Recall Eq. (3)

TS; = Tl’l’lil’l(CF’;, }"th_l).
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From this, for the levered firm with constant amounts of debt

hd EQ [mln(CFt“, VfD)]

I — yu
Vo=Vy t7 A+ry

=1

Obviously, we must now distinguish two cases. If (“sufficiently
small amount of debt”), it is the known case

Vi=V§+1D

and therefore, as with symmetric taxation

ETR®¢ 1 = 7l,. A6(A6)

asymmetric

However, if (“sufficiently large amount of debt”), then

Eo[CF"
— Vi te Z ol rf)r] = (1 + V!

applies. From this follows directly

ETRC¢ 2 — 4 zAx—l(A7)

asymmetric 1 +1 :

Note that [, > 0 must be provided. Hence, for sufficiently small D the ETR may
be vanishingly small, but can never become negative. For sufficiently large debt,
the ETR is positive and independent of the extent of debt. As a result, in the
general case (Where min(CF",, ryD) applies) we realize that

: |
ETR symmetric < 7 MiIN (lo, ) AZ(AR)

1+7

must hold.

where ETR = tl, . Consequently, for increasing D , the effective tax shield ratio

7

must grow from zly to

This completes the proof.
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periods range from 1 to 3 years. Many countries offer schemes for loss carry-forward. Germany,
again, limits the carry-forward volume. Periods, in which tax losses carried forward are valid, range
from 5 years to infinity. See Dwenger and Walch (2014 ) or Canefield (1999).
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3 Currently, six of the G20-countries (Brazil, Germany, France, Italy, Japan, Saudi Arabia) apply
such regulations to restrict loss carry-forward provisions by a certain proportion of profit. In the US,
loss carry-backs are similarly restricted. Losses are ultimately lost in Germany if (within five years)
more than one half of the equity is transfered to a new entity (§8c Abs. 1 Satz 1-4 KStG). In the US
section 382 of the IRC limits the use of the tax loss carryover of a corporation that is acquired in a
merger or stock purchase. The annual limitation is the product of the value of the acquired
corporation and the long-term tax-exempt interest rate, see IRC § 382(b)(1).

* The existence of this risk-neutral measure is called the fundamental theorem and has been used
extensively in option pricing.

> This assumption is now standard in the valuation literature, for formal details of this approach see
Kruschwitz and Loffler (2006, Chap. 1). Notice that our assumption (1) is slightly different from
the literature (multiplicative instead of additive noise). This is due to the fact that only with
multiplicative noise terms a meaningful valuation result can be established, see the discussion of
transversality in Kruschwitz and Loffler (2015, Sects. 3.1 and 3.2).

® Kruschwitz and Lo ffler (2006, Chap. 3) and in particular Sect. 3.2 discuss the problems with
personal income taxes and valuation.

7 The symbol X+ means max(X, 0) .

® The relation of a constant or even deterministic cost of capital to the assumptions cited above is
not straightforward. See Kruschwitz and Loffler (2006, Chap. 1) for details.

? Notice that D, is a random variable. Therefore, a general definition of concavity has to be
applied. However, even with this definition the function min(x, -) is well known to be concave for
any x . The expectation is then the sum of concave functions with a positive scalar and is also
concave. For details see Hiriart-Urruty and Lemarechal (2001, Chap. B.1, Proposition 2.1.1).

10 We have moved the proof to the Appendix.

' For a calculation of the function f(-) see the Appendix.

12 See Appendix for evidence.

13 We would like to thank a reviewer for pointing us to that fact.

14 Again, the proof is in the Appendix.

15 See (A6) in the Appendix.

16 See Kruschwitz and Loffler (2006, p. 421.).

http://eproofing.springer.com/journals/printpage.php?token=6xcjryyl9zsX1Bw3sjVK4VOMT_FspCqK 19/19



