
 

This paper has been accepted for the upcoming 54th Hawaii International Conference on System Sciences (HICSS-

54). Publication in the Conference Proceedings is pending on author's presentation of this paper at the conference 

A Scaling Perspective on AI Startups 
 

Matthias Schulte-Althoff 

Freie Universität Berlin 

matthias.schulte-althoff@fu-

berlin.de 

 

Daniel Fürstenau1,2 

1Copenhagen Business School 

dfu.digi@cbs.dk 
2Freie Universität Berlin 

 

 
Gene Moo Lee 

UBC Sauder School of Business 

 gene.lee@sauder.ubc.ca

 

 

Abstract 

Digital startups’ use of AI technologies has 

significantly increased in recent years, bringing to the 

fore specific barriers to deployment, use, and extraction 

of business value from AI. Utilizing a quantitative 

framework regarding the themes of startup growth and 

scaling, we examine the scaling behavior of AI, 

platform, and service startups. We find evidence of a 

sublinear scaling ratio of revenue to age-discounted 

employment count. The results suggest that revenue-

employee growth pattern of AI startups is close to that 

of service startups, and less so to that of platform 

startups. Furthermore, we find a superlinear growth 

pattern of acquired funding in relation to the 

employment size that is largest for AI startups, possibly 

suggesting hype tendencies around AI startups. We 

discuss implications in the light of new economies of 

scale and scope of AI startups related to decision-

making and prediction. 

 

 

1. Introduction 

 
Artificial Intelligence (AI) unicorns 1 , such as 

Google DeepMind, SenseTime, and UIPath have 

unlocked growth at an unprecedented pace. Networks 

and AI are reshaping the operational foundations of 

firms, enabling digital scale, scope, and learning, and 

erasing deep-seated limits that have constrained firm 

growth and impact for hundreds of years [1].  AI startups 

seem to be able to extend the known types of scaling up, 

e.g., by being able to transfer potent machine learning 

models to other business use cases [2] or by providing 

new kinds of services that outperform humans in terms 

of perception and cognition [3].  We grasp growth as the 

process of changing in relevant measures of firm size 

and scaling as the relation of concepts to each other 

within the growth process. Achieving substantial growth 

                                                 
1 Unicorn is a market term characterizing a newly founded firm that 

had rapidly grown to a private valuation of a billion or more US 

dollars [19] 

and the ability to scale accordingly is a crucial point for 

startups, especially in regards to obtaining funding, 

productivity and the diffusion of new product and 

technological innovations [4]. 

Given their potential, it seems important to consider 

why AI startups do not always scale like traditional 

software and Software-as-a-Service (SaaS) companies. 

Current Information Systems (IS) studies stress the 

potential barriers for creating value with AI 

technologies, such as unclear business cases for AI 

implementations, lack of leadership support and limited 

technological capabilities [5, 6]. They point to both the 

need for talent and access to data as well as the ability 

to capture value from AI applications. Indeed, recent 

industry reports point towards similar scaling problems 

stressing the expenses for cloud infrastructure usage and 

the problems of initial AI model setup that stem from 

data quality issues and unclear specifications [7]. 

Current observations paint the picture of AI startups 

having to put a great deal of time in optimizing their AI 

models and collecting relevant data within the first two 

years [8] – effectively rendering their growth rate more 

similar to a traditional service company than a platform 

or software company that can rely more on existing 

ready-to-use frameworks. For instance, many AI 

startups in the field of digital health focus on service 

business models before developing a more scalable 

approach [9]. 

At the core of these considerations is the question of 

whether there exist substantial differences between the 

“AI” and more classical digital startups and if so, how 

they can also be measured empirically. Hence the 

research question of this paper is: How do AI startups 

scale compared to non-AI startups? This is important 

for both management and investors since the current 

hype around AI falls short to describe the growth 

process of AI startups yet and moreover, it may also 

conceal risks with regards to the initial phase of an AI 

startup. Those AI startups are here contrasted to non-AI 
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startups, especially those with a platform or service 

model but which do not indicate involvement of AI as a 

core of their business model. Drawing on a rich body of 

literature regarding platform and service startups, we 

theorize on how the mentioned types of startups should 

be able to scale compared to AI startups. Current reports 

provide indications that AI startups may scale more like 

traditional service companies tend to despite the big 

scaling potential of AI startups due to data network 

effects [8]. 

Our study uses data sets collected from the large-

scale content aggregator Crunchbase 2 . Utilizing a 

quantitative predictive framework for growth and 

scaling, we analyze how size measures scale in relation 

to certain business measures, i.e. revenues and acquired 

funds, using OLS regression on a dataset of 12,373 AI 

startups, 11,839 platform startups and 24,401 

professional service startups to examine group 

differences. We find that all types of startups show 

sublinear growth in terms of size and revenue and 

superlinear growth in terms of size and acquired 

funding. In addition, taking into account the startups’ 

age, we find that higher revenue is about as much 

connected with more employees for AI startups as it is 

for service startups. 

Our methodology allows for quantifying of scaling 

characteristics for different startup ventures. The 

empirical results provide critical arguments in the 

discussion of phenomenon of new economies of scale 

and scope for AI startups. First, we provide quantifiable 

differences between AI and non-AI startups. Second, we 

link the specific need for use of human resources in the 

process of scaling up among the different startup types. 

On average, AI startups seem to need more human 

resources in order to scale than platform startups and 

about as many as service startups. 

 

2. Growth and Scaling Characteristics of 

AI Startups 

 
In this section, we review how growth of startups has 

been conceptualized in prior research. We describe both 

growth and scaling while focusing on the growth 

characteristics of AI-based startups in comparison to 

two other startup types, i.e. platform and service 

startups. Subsequently, we present a quantitative 

framework that allows measuring growth and scaling 

differences between the three aforementioned startup 

types. 

  

 

                                                 
2 https://www.crunchbase.com/ 

2.1 Digital Startups and Growth 
 

We conceptualize growth as the process of changing 

in relevant measures of size, such as sales revenue, 

employees, and operating profits. Growth is deeply 

embedded in the scientific interests of entrepreneurship, 

so much so that it is sometimes included in the 

distinction between startups and small enterprises [10]. 

Consequently, startups have been conceptualized as 

young, growth-oriented firms that engage in innovative 

behavior [11]. 

From this vantage point, digital startups can be 

further described as firms that market, deliver, and 

support a digital product or service online [12]. Digital 

startups rely on aspects of digital media and IT to pursue 

market opportunities [13]. They often do this by using 

emerging digital technologies such as AI, machine 

learning, deep learning, natural language processing, big 

data analytics, virtual reality, IoT platforms, 3D 

printing, or cloud computing [14, 15]. The important 

function of digital technology for startups lies in at least 

three different roles [16]: Digital startups may use 

digital technologies as a context, an enabler, or an 

outcome of their business. As a context, digital 

technologies help them coordinate, communicate, lead, 

organize, plan, and control. As an enabler, they facilitate 

better tangible and intangible methods of decision-

making. As an outcome, digital technologies are the 

product or service the company produces such as 

delivering software to customers or producing 

hardware. Overall, digital startups make situated use of 

these three possible roles for IT to scale their venture. 

Regarding such digital technologies, it is still widely 

discussed which occasions create affordances to grow 

more quickly [17].  Fast growing digital startups often 

show significant traction on customers, a validated 

business model and higher total funding than slower 

growing startups [18]. However, what makes digital 

business models easier to scale is that the marginal cost 

of serving an additional user on many digital networks 

is, for all purposes, zero, apart from the small 

incremental cost of (cloud) computing capacity [1]. At 

the same time, as low entry costs and plentiful capital is 

often available to digital startups, entry barriers are quite 

low, resulting in an enormous number of entrants [19]. 

Thus, Kenney and Zysman [19] argue that the 

competition ignites an equity-consuming race to build a 

market. 

Another important aspect of growth processes is that 

different business sectors show different setup times, 

adoption speeds, sales cycles, and market opportunities. 

There has already been some research on growth 



 

 

mechanisms of specific types of non-AI digital startups, 

such as platform startups (e.g., [20–23]) and 

professional service startups (e.g, [24–26]). Huang et al. 

[20] summed up the mechanisms of rapid growth of an 

innovative platform startup as (i) being data-driven, (ii) 

being able to release and launch modifications instantly 

and (iii) being able to swiftly transform novel value-in-

use—and therefore able to reduce marginal costs for 

every new customer to close to zero. 

In contrast, professional service startups are 

characterized by high knowledge intensity, low capital 

intensity, and professionalized workforces [27]. Such 

workforces, as well as the increasing capital intensity in 

the context of ongoing digitization, often still prevent 

them from rapid growth in the early years of their startup 

[26]. At the same time, the need for professional service 

providers is growing since an increasingly knowledge 

intensive society expands the need for expertise on how 

to manage knowledge [26]. 

 

2.2 Growth of AI Startups 
 
The focus of this paper is AI startups. We define an 

AI startup as a digital startup having AI as a core 

component of its business model. This means that while 

we consider startups where AI is an enabler or outcome 

of the business model, we do not consider digital 

startups as AI startups where AI technology merely acts 

as the context to improve its work processes [16]. 

Examples of AI startups include companies in 

categories such as machine learning [28–30], intelligent 

systems [31–33], natural language processing [34–38], 

and predictive analytics [39–42]. 

When considering the growth of AI startups, prior 

literature has pointed out two vital aspects. First, AI has 

been characterized as the next general purpose 

technology to be attributed with the property of enabling 

significant complementary investments, which include 

business process redesign, co-invention of new business 

models, and human capital [3]. Even more specifically, 

potent AI models allow for a high prediction quality and 

can therefore consistently identify and meet customer 

requirements [43]. In addition, it has been pointed out 

that once a mature AI model is set up, it has the potential 

to be transferred to other business use cases [1]. Second, 

Gregory et al. [8] stress the important role of data 

network effects for creating user value. This is a 

pertinent value to complement those well-documented 

direct and indirect network effects. Data network effects 

occur when the more that the AI platform learns from 

the data it collects on users, the more valuable the AI 

platform becomes to each user.  Hence, as Andrew Ng 

[44] summarizes, talent and data seem to be the most 

scarce resources for a flourishing AI startup. 

Both IS literature and industry reports indicate 

common issues for AI startups: As Berente et al. put it, 

there is significant uncertainty for businesses regarding 

how to manage AI [6]. It adds a level of complexity that 

goes beyond traditional, less data-intense IT 

applications [45]. Alsheibani, Cheung, and Messom [5] 

highlight barriers for creating and capturing value with 

AI technologies, such as unclear business cases for AI 

implementations, lack of leadership support, and limited 

technological capabilities. These aspects not only point 

to the need for a solid backbone of skillful developers, 

an adequate toolset and a model that is trained on unique 

data but also to the fact that there seems to be a lack of 

clarity about how to extract business value from the use 

of technologies. Furthermore, current industry reports 

underline practical problems stemming from the 

mentioned issues [7]: First, expensive cloud 

infrastructure usage that requires ongoing human 

support is often required. Second, a great number of 

edge cases pose a problem for the initial model setup—

hence it has been surmised that AI lives in the long tail 

[46]. Lastly, defensive moats are weaker due to the 

commoditization of AI models and algorithms. 

Considering these uncertainties, we present in the 

following subsection a way to quantitatively measure 

and predict the properties of the scaling behavior of AI 

startups. 

 

2.3 Quantifying the Scaling Characteristics of 

AI Startups 
 

In this subsection, we aim to uncover certain 

universal principles regarding growth and scaling of 

startups that could provide the basis for a quantitative 

predictive framework. First, we define scaling as how 

size-related concepts relate to each other during the 

growth process, such as the relation of the number of 

employees and the operating profits of startups. Thus, 

scaling refers to how the individual components of a 

system respond when its size changes [47].  Scaling 

arguments can lead to a deep understanding of the 

dynamics of the system of our interest, especially if it is 

a continuously evolving complex adaptive system, such 

as the organizational structure of a startup. 

According to Bettencourt et al. [48], there are three 

types of scaling dynamics. Sublinear scaling 

characterizes sigmoidal growth that eventually 

converges to the carrying capacity N. The driving forces 

put in more economic terms are efficiency, savings in 

size or economies of scale [47]. The slope β of the 

corresponding log-transformed regression line 

describing the relationship of the scaling variables is 

smaller than one. Linear scaling characterizes growth 

that is exponential since the relative or percentage 

growth rate is constant. The slope of the corresponding 



 

 

log-transformed regression line equals one. Superlinear 

scaling characterizes growth that diverges within a finite 

time t. In economic terms, superlinear growth often 

describes increasing returns to scale, as well as self-

reinforcing growth mechanisms that lead to unbounded 

growth—or a boom. Of course, if resources get sparse, 

superlinear dynamics are necessarily followed by a 

collapse. The slope of the corresponding log-

transformed regression is greater than one. 

The scaling perspective has been put to use in the 

field of biology in order to characterize the growth 

properties of human and animal ecosystems [49–51] and 

in the field of urban growth [48, 52]. While scaling 

theory has not been widely used in the management and 

IS literature, there are a few notable works. Axtell [53] 

deployed an agent-based model in which the theory 

serves as an input for assumption formation. The 

simulation model analyzes endogenous firm dynamics 

and labor flows via heterogeneous agents. Another 

study that deployed a scaling perspective to analyze the 

dependence of growth on company size, and derived 

from all US traded manufacturing companies from 1975 

to 1991 a model wherein the probability of a company's 

growth depends on its past and present sales accounts 

[54]. 

Furthermore, the scaling theory has been used by 

West [47] to measure the scaling behavior of publicly 

traded companies using the Compustat dataset. West 

discovered sublinear scaling of employees and net 

income. This sublinear scaling mechanism hints at 

bureaucratic control that is typically needed to 

administer the execution of the company's operational 

business model, within an ever more growing 

organizational structure. It also suggests at least one 

inevitable outcome: that most companies will eventually 

stop growing and cease to have means to persist [47]. 

When applying the scaling perspective to the digital 

startups one has to bear in mind that entrepreneurial 

ecosystems are a much more turbulent and less 

predictable object of consideration than bigger 

companies [55]. Yet, losing some of its predictive 

quality, the theory can give insights into the different 

scaling behaviors of varying kinds of startups. 

When comparing the growth characteristics of AI 

startups with the two non-AI startups types (platform 

and service startups), we find an indication that AI 

startups might scale faster than service startups as the 

marginal costs for more sales units has to be linked with 

employing more consultants 3 . At the same time 

however, AI startups may scale slower than platform 

startups as the marginal costs for one sales unit are close 

to zero for the latter. 

 

3. The Data 

 
We use Crunchbase database, which is an open-

source directory containing community-generated data 

on global technology startups and investors. We used 

the Crunchbase business group categories to gather 

three classes of startups (AI, platform, and service 

startups). In addition, we removed startups in one group 

that are also in one of the other two groups to make the 

classes mutually exclusive. Together these comprise 

12,373, 11,839 and 24,401 individual startups, 

respectively, with a maximum age of 10 years. 

We considered three variables as relevant for our 

scaling analysis: the number of employees, the 

estimated revenue range, and the total amount of 

funding. The table in Appendix 1 shows a summary of 

the descriptive statistics of those variables considered in 

our model for each of the examined startup types. The 

differences in the number of observations stem from 

missing values in the Crunchbase dataset regarding the 

three mentioned variables. 

The average number of employees is larger by a 

factor of roughly two for those service startups in 

comparison to AI and platform startups. Note that the 

startups of all three groups are close in their average age 

(5.4, 6.9, and 5.9 years for AI, platform, and service 

startups, respectively). We made use of an age-weight 

in an additional analysis, in order to consider this 

temporal dimension. Regarding the total amount of 

funding, the median seems to give a better picture in 

terms of not letting outliers distort the average amount: 

The median funding amount for AI startups is more than 

three times that of platform startups and 1⅔ times that 

of service startups. 

In regards to the reliability of Crunchbase dataset, 

we found that this platform tightly monitors their data to 

continuously correct inaccurate information. In 

particular, Crunchbase takes three means to ensure data 

curation [56]: First, the editors are part of the business 

to control for face value validity of the data. Second, 

Crunchbase uses machine-learning algorithms to 

compare data against publicly available information. 

Finally, data analysts recruited by Crunchbase take 

manual care of data validation. Being able to give basic 

trust to the data sources, we will subsequently present 

the methodology used to analyze the data in this paper. 

 

                                                 
3 Or as Anne Marie Neatham, COO of Ocado Technology put it: 

“Human beings can do everything that AI can do. They just can’t do 

it to scale.”, found in [1] 

 



 

 

Table 1. Scaling exponents for business metrics vs. measurements of startup sizes 
Startup size X Business Metric Y Group β Adj-R² N 

Number of employees Estimated size of revenue 

AI 0.31 0.12 1,989 

Platform 0.20 0.05 5,047 

Service 0.43 0.23 7,016 

Age-discounted number 

of employees 
Estimated size of revenue 

AI 0.30 0.12 1,912 

Platform 0.24 0.07 3,838 

Service 0.31 0.13 5,115 

Number of employees Total sum of funding 

AI 1.30 0.36 3,081 

Platform 1.06 0.24 1,204 

Service 1.06 0.28 2,389 

Age-discounted number 

of employees 
Total sum of funding 

AI 1.31 0.35 2.942 

Platform 1.06 0.24 1,194 

Service 1.08 0.28 2,371 

In the following, we apply a scaling analysis as 

sketched out in subsection 2.3. Note that we are treating 

ordinal data as continuous to perform a log-transformed 

regression analysis. The argument to do so is the 

assumption that the numerical distance between each set 

of subsequent categories is close to each other in our 

analysis. Consequently, the results will be rendered 

close to reality. 

 

4. Results 

 
The scaling analysis in this section consists of two 

main steps: comparing the scaling behavior of (i) the 

number of employees vs. the estimated revenue, and (ii) 

the number of employees vs. the total sum of funding. 

For both steps, we first consider the size in total and, 

second, we examine the age-discounted firm size. 

Summary results for selected exponents are presented in 

Table 1, and scaling relationships are visualized in 

Figure 2. 

The figures show the regression line and confidence 

margins for the log-transformed variables as well as the 

slope β of the log-transformed regression line. Using a 

measure N of startup size at time t, power law scaling 

takes the form Y(t) = Y0N(t) β. Y denotes a business 

metric, in this case it is either the estimated size of 

revenue or total sum of funding; Y0 is a normalization 

constant. The exponent β reflects dynamic rules at play 

across the startups: It can be understood as an increase 

in the size N of the startup with a factor of one, which 

will lead to an average increase in the corresponding 

business metric by a factor of β. We will elaborate on 

the individual results in the following paragraphs. 

The first analysis compares the startup’s number of 

employees with its estimated revenue. We find sublinear 

scaling for all startup groups. The differences in the 

respective scaling exponents is still striking. We found 

the slope of our regression line for AI startups (0.31) to 

be higher by a factor of roughly 1.5 than for platform 

startups (0.20). The slope of service startups in turn is 

higher by 0.12 than for AI startups. Taking into account 

the higher baseline value for AI startups with small team 

sizes (below 10), the result suggests that marginal 

revenue is more tightly coupled with an increase in the 

number of employees for service startups than for AI 

startups. 

We included the same analysis but with an age-

discounted employee count to account for the temporal 

aspect of the startups’ age. The age-discounted 

employee function f(x,y) ≜ 𝑥 ∗ e α*y with x being the 

number of employees, y being the startup age, and 

α being a weighting factor. The weighting factor α was 

set to 0.05 after testing the robustness of different 

models. The results show that among service startups, 

the slope drops noticeably to 0.31 while the slope of AI 

startups does not change much. This may suggest that 

age plays a more drastic role in increasing revenue for 

service startups than for AI startups. 

The next analysis depicts the scaling of the total 

amount of funding compared to the number of 

employees. The results show superlinear scaling 

dynamics for all three startup types. As expected, AI 

startups have the steepest increase of funding with 

employment growth (β = 1.30), followed by platform 

startups and service with an equal slope (β = 1.06). In 

addition, the median of the total funding for AI is about 

three times higher than for platform start-ups and about 

1.5 times higher than for service start-ups. The same 

analysis with an age-discounted employee count 

produces nearly the same results, suggesting the minor 

role of the temporal aspect concerning startup size in the 

scaling mechanism of the acquired funding. The results 

seem to stress the ability to acquire substantially higher 

funding for AI startups. 

It is striking that the explained variance for the 

funding is significantly higher than for revenue. This is 

reasonable since funding can be put to use immediately 

to gather more resources whereas revenue may be bound 

to certain commitments [19]. However, as the variable 

revenue still explains a reasonable amount of the overall 

variance and because the differences in the effect



 

 

 

Figure 2. Examples of scaling relationships for AI (red), platform (green), and service startups 
(blue): (a) the estimated amount of revenue vs. the number of employees scales sublinearly and 

(b) the total amount of funding vs. the number of employees scales superlinearly 
 

strengths are so vastly different for the startup groups, 

we believe it is an insightful variable in terms of group 

comparison. 

We included two further analyses by (i) splitting up 

the data geographically into Europe, Northern America 

and Asian-Pacific and (ii) examining different business 

categories of AI startups and included the results in 

Appendix 2. The regional analysis regarding revenue (i) 

reveals close to no differences for service startups but 

larger differences for platform and AI startups: The beta 

coefficient is smallest for Northern America (AI: 0.23; 

platform: 0.18) and highest for Asian-Pacific (AI: 0.42; 

platform: 0.44) with Europe in between (AI: 0.29; 

platform: 0.25). Since the average value of the target 

variable is close to similar for the three categories this 

hints to connection of employees and revenue that is 

much smaller in the US. For funding, the regional 

differences are much smaller. The business category 

analysis for AI startups (ii) reveals that in the FinTech 

and the Health Care sector employees and revenue are 

connected most closely. Since these sectors are heavily 

regulated, market entry and data sharing prove to be 

especially difficult [9, 57]. Regarding the funding, the 

more traditional sectors of Analytics and E-Commerce 

are less likely to gain more funding when having more 

employees. 

We ran several robustness checks to rule out other 

explanations. First, we cutoff revenue outliers at 

different top percentages to control for possible 

distortions by the most performant startups. For a 10% 

cutoff, the slope for every startup group dropped 

similarly by around 3% (AI startups) to 5% (service 

startups). Second, grouping the startups by age and 

running the same analyses shows that both the 

predictive quality and the slope β rise with a higher 

startup age, which is in line with the theory that bigger 

companies more consistently need more personnel in 

order to scale [47]. 

 

5. Discussion 

 
The previous section revealed sublinear scaling 

dynamics for the estimated sum of revenue in relation to 

the startup size. This was found for both AI as well as 

platform and service startups. This result is in line with 

that of West’s [47] analysis regarding the scaling 

behavior of publicly traded companies we have referred 

to in subsection 2.3. For startups, the increase in size is 

even more loosely linked to the revenue generated than 

is the case for larger companies. Note that young 

startups will, of course, find it easier than larger 

companies to grow their revenues at higher percentage 

rates since a small number is easier to double than a 

large one. 

Regarding the group comparison between AI 

startups with platform and service startups, we find that 

marginal increase of revenue is linked less closely to the 

number of employees for AI startups than for the service 

startups, but more closely linked than for the platform 

startups.   However, when incorporating the temporal 

aspect of a startup’s age, the effect size for service 

startups is reduced to roughly the same amount as that 

of AI startups, while the effect size of platform startups 

is considerably lower. This hints to the argument that the 

necessity for humans-in-the-loop is much less present 

for platform startups than for the other two startup types. 

In particular, AI startups seem to need nearly as much 

personnel to scale as service startups appear to.  

Furthermore, we find a superlinear growth pattern of 

acquired funding in relation to the startup size for all 

startups in our sample. The effect is biggest for the AI 

startup type hinting to the ever-rising popularity of AI  



 

 

Figure 3. Increase of Crunchbase business 

categories from 2017 to 2019 for a sample of 
300 (a) AI startups and (b) service startups 
matched with the AI startups according to 

their company size and revenue 

with investors in recent years [58]. Moreover, in 

combination with the result of the previous analysis, it 

may suggest that AI startups despite being able to 

acquire higher funding invest less in human capital. 

Our findings pose interesting questions regarding 

new economies of scale and scope [1] in the growth 

process of AI startups. Scale effects occur when a firm’s 

operating model is designed to cope with greater 

volume, complexity, and number of customers [1]. 

Scope effects are defined by the range of activities 

provided by a firm as measured by the number of 

products or services provided. A firm’s operating model 

supports scope through having centralized functions or 

using advanced technologies [1]. IS literature has 

documented the important role of scaling the user base 

for successful venture creation [20, 59], while being less 

concerned with scaling through other means such as 

data (see for exceptions [60, 61]). Thus, AI has been 

associated with new economies of scale [1, 43] but 

beyond user scaling, recent accounts have emphasized 

the role of data at scale [43, 62]. While it is not entirely 

clear whether the business value of large data has 

unlimited positive returns [43, 63], access to enough 

relevant data is unquestionably a bottleneck factor for 

many AI startups to scale. 

Some IS and innovation management accounts, 

which focus on platform firms have emphasized the role 

of scope effects in configuring diverse resources and 

knowledge into a coherent ecosystem [23, 64]. Certain 

researchers have argued that the increasing variety in 

different use cases makes AI (or specific forms, such as 

deep learning) a general purpose technology [65–67]. 

This means that AI is not limited to particular use cases 

or application domains, but transformative to many 

industries and domains [1]. This points to new scope 

effects where AI technologies remove bottlenecks, thus 

enabling startups to be less loyal to industry boundaries 

and transfer potent models to other sectors. 

At least apparently, we find evidence in the form of 

a massive increase in business categories of AI startups 

compared to service startups that seems to support this 

idea. Figure 3 provides an overview of the increase of 

business categories from 2017 to 2019 for a sample of 

300 (a) AI startups and (b) service startups that were 

matched with them according to their size and revenue. 

An alternative explanation for this phenomenon could 

be the hype surrounding such AI technology [68], which 

has gone on to have many startups deliberately choose 

to integrate either AI technology or at least the AI 

technology labels. 

Our results from the scaling analysis provide first 

empirical evidence that - on a large scale - the scaling 

behavior of AI startups does not differ substantially 

from service startups in terms of the need for human 

resources. Although both kinds of startups scale 

significantly differently than platform startups, in which 

having bigger teams is not as significantly connected 

with higher revenue. This points to AI startups having 

indeed a higher need for investing in human resource. 

The literature has consistently identified the two most 

common features of AI and digital platform startups 

regarding scaling dynamics: an operating model that 

allows for near to zero marginal costs for acquiring new 

customers [1, 69] and the much discussed network 

effects [8, 70]. Since there are measurable differences in 

the scaling behavior, an interesting research opportunity 

would be to further tease out those differences in the 

underlying mechanisms. 

 

6. Conclusion 

 
We aimed to better understand growth and scaling 

dynamics of AI startups. Using a large data set from 

Crunchbase, we analyzed the scaling behavior of AI 

startups and compared it to platform and professional 

service startups—making use of a quantitative, 

predictive framework. We found sublinear growth of 

revenue and superlinear growth of the total sum of 

funding both in a relation to the startup size as measured 

by the number of employees. Regarding the group 

comparison, we found that the marginal increase of 

revenue is as closely connected to employee count for 

AI startups as it is for service startups. Platform startups, 

on the other hand, seem to require less human resources 



 

 

to scale. Gregory et al [8] highlight the importance of 

data in the first place and respective data network 

effects. In extension, we show that limited data 

availability and efforts for configuring the AI model 

may make AI startups require more people to grow in 

the first years. For management and investors, it is 

important to understand that data and AI model setup 

are important considerations in the first years and that 

these points potentially limit growth posing a risk to 

survival. 
Our paper is not without limitations. First, the ‘label’ 

AI has been used to identify AI startups and to 

distinguish them from other types of startups. While 

data is well curated in Crunchbase further research 

should cross-validate whether the label and reality fit. 

Second, we focused on companies included in 

Crunchbase, which might have introduced a survival 

bias since being present in this data source may already 

be an indicator of a successful venture. Nevertheless, 

since our focus lies on digital entrepreneurs, we believe 

the large sample from Crunchbase can provide a 

comprehensive picture of the regarded startup types. 
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Appendix 

Appendix 1: Variable Type, Range and Distribution 

Variable Type and range Group Rank distribution 

(number of startups in parenthesis) 

Descriptive statistics 

Number 

of 

employee

s 

Grouped; range 

represented by average: 

5:  (0,10] empl. 

25: (10, 50] empl. 

75: (50, 100] empl. 

175: (100, 250] empl. 

250: >250 empl. 

AI 5 (4,773); 25 (2,740); 75 (272); 175 

(175); 250 (51); N = 7,986 

Avg: 18.00; SD: 32.16; 

CI0.05: [18.30, 19.71] 

Q0.25: 5; Mdn: 5 

Q0.75: 25 

Platform 5 (5,873); 25 (2,327); 75 (320); 175 

(142); 250 (113); N = 8,775 

Avg: 18.76; SD: 36.55 

CI0.05: [18.00, 19.53] 

Q0.25: 5; Mdn: 5 

Q0.75: 25 

Service 5 (9,487); 25 (4,956); 75 (858); 175 

(1028); 250 (650); N = 16,979 

Avg: 34.05; SD: 59.74 

CI0.05: [33.15, 34.95] 

Q0.25: 5; Mdn: 5 

Q0.75: 25 

Estimated 

revenue 

range 

Grouped; range 

represented by group 

average  

$1M: 1 M$ (or less) 

$5M: (1,10] M$ 

$30M: (10,50] M$ 

$75M: (50,100] M$ 

$250M: (100,500] M$ 

AI $1M (931); $5M (1,138); $30M (52); 

$75M (6); N = 2,127 

Avg: 3,865,068.2; SD: 4,606,137 

CI0.05: [3,669,206; 4,060,929] 

Q0.25: 1M; Mdn: 5M 

Q0.75: 5M 

Platform $1M (2,409); $5M (2,776); $30M (180); 

$75M (26); $250M (17); 

N = 5,408 

Avg: 4,990,569.5; SD: 15,255,475 

CI0.05: [4,583,889; 5,397,249] 

Q0.25: 1M; Mdn: 5M 

Q0.75: 5M 

Service $1M (3,721); $5M (3,279); $30M (785); 

$75M (96); $250M (80); 

N = 7,961 

Avg: 8,408,617; SD: 26,413,412 

CI0.05: [7,828,314; 8,988,920] 

Q0.25: 1M; Mdn: 5M 

Q0.75: 5M 

Total 

amount of 

funding 

Continuous Values AI N = 3,549 Avg: 18,375,499; SD: 163,799,459 

CI0.05: [12,984,668; 23,766,330] 

Q0.25: 333,666; Mdn:1.6M 

Q0.75: 5.845.000 

Platform N = 1,387 Avg: 21,336,39; SD: 246,667,547 

CI0.05: [8,343,636; 34,329,149]  

Q0.25: 100,000; 

Mdn: 500,000 

Q0.75: 250,000 

Service N = 2,852 Avg: 33,505,429; SD: 416,917,899 

CI0.05: [18,197,788; 48,813,071] 

Q0.25: 143,875 

Mdn: 993,500 

Q0.75: 5,000,000 

Appendix 2: Startups by Different Locations and AI Startups by Different Business Categories 

Startup size 

X 

Business 

Metric Y 

Business Category β Adj-

R² 

N 

Number of 

employees 

Estimated 

size of 

revenue 

Machine Learning 0.26 0.10 887 

Big Data 0.26 0.08 362 

Analytics 0.29 0.11 333 

SaaS 0.27 0.11 255 

FinTech 0.43 0.23 128 

Robotics 0.22 0.07 100 

E-Commerce 0.23 0.07 82 

Marketing 0.20 0.04 71 

Medical 0.34 0.16 48 

Autonomous Vehicles 0.29 0.15 37 

Number of 

employees 

Total sum 

of funding 

Machine Learning 1.23 0.37 1,506 

Big Data 1.27 0.40 451 

Analytics 1.09 0.34 413 

SaaS 1.13 0.38 417 

FinTech 1.28 0.44 211 

Robotics 1.31 0.44 152 

E-Commerce 1.09 0.23 136 

Marketing 1.19 0.44 89 

Medical 1.32 0.42 85 

Autonomous Vehicles 1.37 0.50 69 

Startup size 

X 

Business 

Metric Y 

Group Location β Adj-

R² 

N 

No. of 

employees 

Estimated 

size of 

revenue 

AI 

North America 0.23 0.08 963 

Europe 0.29 0.12 467 

Asia-Pacific 0.42 0.29 200 

Platfor

m 

North America 0.18 0.03 1,911 

Europe 0.25 0.06 593 

Asia-Pacific 0.44 0.14 573 

Service 

North America 0.37 0.17 3,222 

Europe 0.38 0.20 808 

Asia-Pacific 0.37 0.16 728 

 Number of 

employees 

Total sum of 

funding 

AI 

North America 1.20 0.39 1,509 

Europe 1.15 0.36 852 

Asia-Pacific 1.34 0.39 350 

Platfor

m 

North America 1.03 0.26 632 

Europe 1.12 0.27 210 

Asia-Pacific 0.89 0.12 139 

Service 

North America 1.09 0.33 1,113 

Europe 0.98 0.25 458 

Asia-Pacific 0.88 0.16 349 


