
M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-1

Heuristic Methods for Increasing Delay-Tolerance of Vehicle
Schedules in Public Bus Transport

Stefan Kramkowski∗ Natalia Kliewer∗ Christian Meier∗

∗Decision Support & Operations Research Lab, University of Paderborn
Warburger Str. 100, 33098 Paderborn, Germany
{kramkowski,kliewer,meier}@dsor.de

1 Vehicle Scheduling and Disruptions

The resource scheduling for buses, the so called vehicle scheduling, is one of the main tasks in
the operational planning process of public transport companies. It assigns buses to cover a given
set of timetabled trips, such that planned costs are minimal. The costs consist of fixed cost per
vehicle and variable cost per driven kilometer and per hour the vehicle spent outside the depot. A
vehicle schedule is feasible if and only if each timetabled trip is assigned to one vehicle of allowed
vehicle-type and each vehicle starts at a depot and gets back to it at the end of the planning
horizon (mostly working day). For a detailed description of the vehicle scheduling problem (VSP)
and different solution approaches see [8] and [3].

Traditionally vehicle schedules are created several weeks before the day of operations. Therefore
scheduling cannot consider real driving times. Expected values for different routes and time of day
are used instead for the cost-efficient resource scheduling.

Disruptions and delays are normally unavoidable on the day of operations, but the possibility
of such disruptions is usually not regarded in the offline vehicle scheduling. Thus they can heavily
affect the operations of the cost-efficient schedules, leading to significant increase in the costs of
schedule operations.

In the last years vehicle schedules get more and more cost-efficient through application of spe-
cialized planning software and improvements of optimization approaches. But by decreasing the
planned cost without consideration of future disruptions, the disruption-sensitivity tends to increase,
because of the reduction of the idle time of buses, which can make up for delays. In occurrence
of disruptions, this leads to an unscheduled assignment of additional vehicles and to penalty fees,
which have to be payed to the governmental administration by the transportation company, if
timetabled trip punctuality falls below an contracted minimal level (see [6]). Therefore the real cost
can increase contrary to the original goal, even if the planned cost has decreased.

There are different alternatives to avoid this undesirable effect: The vehicle schedules can be
computed online during execution or continuously can be adjusted to the current conditions on the
day of operations. This can be realized using online algorithms or by repeatedly solving recovery

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-2 MIC 2009: The VIII Metaheuristics International Conference

problems. The dynamic vehicle scheduling problem presented in [6] is allocated to this field as well. In
the most practical cases such approaches are difficult to implement, because of the interdependencies
with other planning phases, such as crew scheduling and rostering, which then also should be
computed or recovered online.

To retain the established planning process, in this work another approach is persued: As before,
the vehicle scheduling is accomplished offline, whereas now potential disruptions are considered in
the planning process as well. By the use of this approach, an excessive reduction of vehicle idle
times can be avoided. The resulting vehicle schedules are in some degree robust, or more precisely
remain stable if disruptions occur. This means, the schedules are able to absorb a certain amount of
delays. To the best of our knowledge, in literature exist no such approaches for bus scheduling. The
terms robustness and stability, that have been introduced above for vehicle scheduling problems,
are discussed in [10] in a more general context.

In section 2 two methods are presented, that implement the offline approach. They both are
in form of a schedule-improving heuristic based on simulated annealing for noisy environments as
proposed by [2]. Section 3 compares computational results of the different approaches and two
parameter-sets.

2 Approaches to Increase Delay-Tolerance

After definition of a measure for delay-tolerance, we present in this section the following approaches
to increase delay-tolerance:

Simulated annealing for noisy environments with a

• random based neighbourhood operator

• selective neighbourhood operator

2.1 Measuring Delay-Tolerance

Before describing the approaches, the term delay-tolerance has to be defined in detail. In literature
(e.g. [4] and [11]) primary and secondary delays are distinguished. From the planning point of view,
primary delays are exogenious and are caused directly by disruptions, whereas secondary (induced)
delays are endogenous. They are evoked by primary delays through internal dependencies of the
trips of one vehicle. For example, if a timetabled trip is behind schedule and the idle time before
the following trip is too short and no recovery is carried out, the following trip will be secondarily
delayed. Only secondary delays can be influenced by modifying the vehicle schedule.

In this work secondary delays and propagated delays are used synonymously, because using
recovery procedures during measuring the stability of vehicle schedules makes no sense. This means,
delays are propagated until they are absorbed by idle times or the working day ends. Besides,
propagated delays are only measured if they belong to timetabled trips, because delays belonging
to deadheads are of least interest for the passengers and the transportation companies. Only for
that reason the evaluation of stability is unaltered.

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-3

Thus, we define our measure for delay-tolerance as follows: For each timetabled trip quantify
the time (in seconds) the trip is starting behind schedule. If a timetabled trip is starting punctually,
this time is zero seconds. Now calculate the expected length of a secondary delay per timetabled
trip (E(SD)) as average over all these starting time deviations.

Comparing two E(SD) values, differences can be caused by changes in frequency and/or length
of the secondary delays. The actual reason can be determined via the expected length of secondary
delays larger than zero (E(SD|SD > 0)) and the probability of secondary delays larger than zero
(P(SD > 0)). They can be calculated correspondingly to E(SD). The relation between all these
measures is described by equation 1.

E(SD) = E(SD|SD>0)/P(SD>0) (1)

If secondary delays are computed not only for one delay scenario but for sundry scenarios or
simulation with multiple runs is used, E(SD), E(SD|SD > 0) and P(SD > 0) are calculated as
average over all scenarios or runs.

2.2 Simulated Annealing for Noisy Environments

Simulated annealing for noisy environments (in short SANE) is first proposed by [2]. It is a mono-
criterial meta-heuristic, which can be used, if the solutions objective value is subject to stochastic
uncertainty. The actual objective function z is defined as:

z = planned cost + delay cost (2)

delay cost = variable delay cost + delay penalty (3)

delay penalty =
∑

prop. delays

(delay length)2 · fix cost per bus
α2

(4)

The planned cost1 are deterministic for each vehicle schedule, whereas the delay cost (equation
3) can be calculated only by a set of primary delays. To obtain a representative set of primary
delays, Monte-Carlo simulation is used with a probability function to control the decision if a trip
is delayed or not and to determine the length of possible delays. The delay penalty (equation 4) is
founded by [6], who squared the length (in seconds) of each propagated delay of a timetabled trip
and weights it with the fixed cost of the particular vehicle-type divided by α2. This effects, that
a propagated delay of length α (in seconds) is just as expensive as an additional vehicle and few
small delays are prefered above one large delay. The variable delay cost represents the additional
resource usage due to primary and secondary delays.

As a result, the delay cost and therefore the value of the objective function are stochastically
influenced, so that SANE is used as meta-heuristic scheme for this method instead of conventionally
simulated annealing (see [7]). The reason for choosing SANE instead of stochastic annealing (see
[5]) is that it allows temperatures higher than the Temperature Equivalent for one sample and it
controls the number of samples used for fitness evaluation (see [2]) whereby the solution process is
speeded up. Sampling delays is still the most time-consuming operation in the heuristic.

1For a definition of the planned cost see [8].

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-4 MIC 2009: The VIII Metaheuristics International Conference

Algorithm 1: Heuristic Improvement Method for Robust Vehicle Schedules
Input: initial vehicle schedule xI

Result: vehicle schedule xC

current vehicle schedule xC ← xI

generate dummy neighbourhood solution xN ∈ N(xC)
simulate delays in xC and xN 50-times
calculate mean of objective function for xC and xN

δ̂ ← E(xN)− E(xC)
estimate σ2

∆E as variance of δ̂ between simulation runs
iteration count n← 0
initial temperature T0 ← τ · σ∆E ·

√
π/8

current temperature Tn ← T0

repeat
repeat

n← n+ 1
generate neighbourhood solution xN ∈ N(xC)
simulate delays in xN 50-times
calculate mean of objective function for xN

δ̂ ← E(xN)− E(xC)
update estimation of σ2

∆E

if Tn ≥ σ∆E ·
√
π/8 then

check acceptance by Ceperley and Dewing criterion
else

// sequential sampling with acceptance criterion by Glauber
m← 50
Perr(δ̂)← Φ(−|δ̂| ·

√
m/σ∆E)

while Perr > PGlauber
a (|δ̂|) ∧m < 500 do

draw another sample
m← m+ 1
update δ̂, σ2

∆E and Perr

end
accept better solution

end
until n mod β = 0
Tn ← Tn−1 · γ

until Tn < T0/10000

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-5

Figure 1: Reassigning a Timetabled Trip to another Vehicle and Adding/Removing Deadheads

The presented method proceeds as shown in algorithm 1: Based upon a valid initial solution and
an arbitrary valid neighbourhood solution, σ2

∆E is estimated. Then the initial temperature is set to
the Temperature Equivalent for one sample (see [2]) multiplied by τ . During the procedure, valid
neighbourhood solutions are generated, evaluated and either accepted or refused, until a defined
termination condition is met. In contrast to [2], in the presented approach at least 50 samples are
drawn for each neighbourhood solution, because not only the difference of the fitness values but
also their variance has to be estimated. The actual solution at the time of termination is taken as
the result of the procedure.

The check of acceptance by Ceperley and Dewing and the sequential sampling with acceptence
criterion by Glauber execute as presented in [2] with one difference: In sequential sampling a
maximal sample count of 500 is introduced to speed up the procedure. According to the annealing
schedule described by algorithm 1, the temperature is reduced by multiplier γ ∈ [0; 1] statically every
β iterations. The static annealing interval and the geometric annealing have proven appropriate in
several tests (see section 3). Two variants for generation of neighbourhood solutions are subsequently
described in detail.

2.2.1 Random Based Neighbourhood Operator

Based on the current vehicle schedule, in the neighbourhood generation step, a slightly different
neighbouring solution has to be computed. The random based neighbourhood operator randomly
selects a timetabled trip from the current vehicle schedule and reassigns it to another randomly
selected vehicle, that can serve the selected timetabled trip without time intersection or violation of
vehicle-type restrictions. If no such vehicle exists, a new vehicle with the same vehicle-type as the
one previously serving the selected timetabled trip is added to the schedule and the timetabled trip
is assigned to the new vehicle. In any case, deadheads must be added or removed to secure validity
of the modified tours. Therefore, a complete deadhead matrix is important, such that deadheads
are allowed at every time of day from every stoppoint to each other. If the deadhead matrix is not
complete, it has to be completed with all-pairs transitive shortest paths (see [1]). Figure 1 visualizes
the neighbourhood generation as a time-space network (see [8]) for two tours A and B, where T is
the timetabled trip to be reassigned.

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-6 MIC 2009: The VIII Metaheuristics International Conference

2.2.2 Selective Neighbourhood Operator

To perform a more purposeful neighbourhood operation, another procedure has been developed.
Just as the random based neighbourhood operator described above, the selective neighbourhood
operator reassigns one timetabled trip to another vehicle, that is qualified to serve it. In contra-
diction to the random based operator, the selective operator calculates the expected propagated
delay for each timetabled trip and selects that timetabled trip for reassignment with the largest
propagated delay. This timetabled trip is assigend to the valid vehicle, that provides the largest
buffer time straight previous to the timetabled trip. If no such vehicle exists, a new vehicle is
added as described before. At last deadheads are added and removed to retain the validity of the
neighbourhood schedule.

If the neighbour solution generated this way is not accepted by SANE, it is necessary to select
another timetabled trip for reassignment in next neighbourhood generation. Otherwise the neigh-
bourhood solution would stay the same till it is accepted or SANE terminates. Most appropriately,
the timetabled trip with the second largest propagated delay is selected. If this new solution is
declined too, the timetabled trip with the third largest propagated delay has to be choosen, and
so on. If a neighbourhood solution is accepted, the next neighbourhood generation searches for the
largest propagated delay again.

This procedure allows the use of an additional termination condition: If all timetabled trips
are tried out for reassignment, nothing more can be done. This means, if the number of gener-
ated neighbour solutions till the last accepted is equal to the number of timetabled trips, SANE
terminates.

3 Results and Outlook

The approaches were tested on three real-world problems from german cities (see table 1).2 As initial
solutions vehicle schedules with minimal planned cost were used, because we assume that the sought
after robust vehicle schedules do not deviate significantly from them. They have been computed
using the software described in [8] and FIFO flow-decomposition see [9]. For the same reason τ = 1
is used and so acceptance by Ceperly and Dewing is avoided. The simulation of primary delays
during SANE uses an aggregated probability function: Based on a Bernoulli-experiment 20% of the
trips are primarily delayed and the length of the primary delays (in seconds) was sampled using
a triangular distribution in the intervall [1; 600] with dense-maximum at 1. For the delay penalty
(equation 4) α = 1920 is used as in [6].

Because Monte-Carlo simulation is used during SANE and for evaluation of the results, circular
reasing has to be avoided. So final evaluation is done with probability distribution 5 for the primary
delays of each trip. This distribution is a suitable approximation of the primary delay scenarios
used in [6]. To make the comparison accurate, 500 simulation runs with the same pseudo random
input have been carried out for each vehicle schedule.

PD ∼ bExp(λ) · 2c · 60 with λ = 3.3 (5)
2The instance names are encoded as: #timetabled trips #depots #vehicle-types.

All test instances can be downloaded at http://dsor.upb.de/bustestset

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-7

Table 1: Characteristics of Test Instances
instance #timetabled- #depots #vehicle- #stoppoints �group-size deadhead

trips types density

424 1 1 424 1 1 34 1.0 100%
426 1 1 426 1 1 33 1.0 100%
1296 1 3 1296 1 3 88 1.3 100%

Table 2: Parameter-set 1 with β = 50 and γ = 0.90
instance neighbourhood planned cost delay cost P(SD>0) E(SD|SD>0)

initial 2951679 2004 2.5% 75.1
424 1 1 random 2956689 1693 2.2% 74.4

selective 2953808 1956 2.4% 75.8
initial 1934170 5166 13.8% 59.5

426 1 1 random 1936463 4829 12.7% 60.5
selective 1935075 5115 13.7% 59.8

initial 54271025 187142 5.7% 81.2
1296 1 3 random 54385403 176800 5.4% 80.8

selective 54396902 166740 5.2% 80.5

The results comparing the two approaches and two different parameter-sets for β and γ are
presented in table 2 and 3. For each parameter-set one table is given that compares the approaches.
The tables columns from left to right are the test instances name, the used neighbourhood operator
or ”initial”, the planned cost, the delay cost (equation 3 with α = 1920), the probability of a
secondary delay larger than zero per timetabled trip and the expected length of a secondary delay
larger than zero per timetabled trip (in seconds). The expected length of a secondary delay as used
in section 3 can be calculated by equation 1.

As can be seen from the tables, delay-tolerance of all test instances can be increased by both
presented neighbourhood operators and both parameter-sets without disregarding the planned cost:
The increase of planned cost is very little, because no additional vehicles are used and vehicles fixed

Table 3: Parameter-set 2 with β = 20 and γ = 0.95
instance neighbourhood planned cost delay cost P(SD>0) E(SD|SD>0)

initial 2951679 2004 2.5% 75.1
424 1 1 random 2956448 1874 2.3% 75.5

selective 2954659 2036 2.4% 77.7
initial 1934170 5166 13.8% 59.5

426 1 1 random 1936114 4815 13.0% 59.7
selective 1935075 5115 13.7% 59.8

initial 54271025 187142 5.7% 81.2
1296 1 3 random 54356612 178844 5.5% 81.2

selective 54396594 165061 5.1% 80.5

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-8 MIC 2009: The VIII Metaheuristics International Conference

cost dominate the planned cost.

At nearly all test instances and neighbourhood operators parameter-set 1 performs better than
2 with respect to the expected length of a propagated delay (E(SD)). Regarding the planned cost,
sometimes parameter-set 1 and sometimes 2 is better. Overall, many iterations at each temperature
level (large β) in combination with a faster annealing (small γ) seems to be good.

Regarding delay-tolerance, the random based neighbourhood operator performs better than the
selective one for the small test instances at both parameter-sets. For the larger test instance the se-
lective neighbourhood operator more increases delay-tolerance at both parameter-sets. With respect
to planned cost the ranking of neighbourhood operators is just vice versa than for delay-tolerance
at all parameter-sets and test instances. In summary, the differences between the neighbourhood
operators are little.

From a practical point of view the SANE based heuristics perform well, because they decrease
the expected secondary delay with approximately no increase of planned cost. But more solutions
are of interest, with higher delay-tolerance and higher planned cost until fixed cost of one additional
vehicle. But this cannot be done only by changing the objective function of SANE, because some
test runs (not shown here) suggest, that both above presented neighbourhood operatores are not
able to achieve vehicle schedules in this area of solution space. We assume the solution space to
be too complex for the presented simple neighbourhood operators because of the many feasibility
restrictions (see 1). Thus, we started to implement some new neighbourhood operator, that use
models from exact vehicle scheduling as SPP and Multi-Commodity-Minimum-Cost-Flow to cope
with this.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, 1993.

[2] J. Branke, S. Meisel, and C. Schmidt. Simulated annealing in the presence of noise. Journal of
Heuristics, 14:627–654, 2008.

[3] S. Bunte, N. Kliewer, and L. Suhl. An Overview on Vehicle Scheduling Models in Public
Transport. Proceedings of the 10th International Conference on Computer-Aided Scheduling of
Public Transport, Leeds, 2006.

[4] M. Carey. Ex ante Heuristic Measures for Schedule Reliability. Transportation Research Part
B, 33:473–494, 1999.

[5] T.M.A. Fink. Inverse protein folding, hierachical optimisation and tie knots. University of
Cambridge, Ph.D. thesis, 1998.

[6] D. Huisman, R. Freling, and A.P.M. Wagelmans. A Robust Solution Approach to the Dynamic
Vehicle Scheduling Problem. Transportation Science, 38:447–458, 2004.

[7] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science,
220:671–680, 1983.

[8] N. Kliewer, T. Mellouli, and L. Suhl. A time-space network based exact optimization model for
multi-depot bus scheduling. European Journal of Operational Research, 175:1616–1627, 2006.

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-9

[9] N. Kliewer, V. Gintner, and L. Suhl. Line Change Considerations Within a Time-Space Network
Based Multi-Depot Bus Scheduling Model. In M. Hickman, P. Mirchandani, and S. Voß, editors,
Lecture Notes in Economics and Mathematical Systems: Computer-aided Systems in Public
Transport, 600:57–70, 2008.

[10] A. Scholl. Robuste Planung und Optimierung. Physica-Verlag, Heidelberg, 2001 (in German).

[11] P. Zhu, and E. Schneider. Determining Traffic Delayes through Simulation. In S. Voß, and
J.R. Daduna, editors, Lecture Notes in Economics and Mathematical Systems: Computer Aided
Scheduling of Public Transport, 505:387–399, 2001.

Hamburg, Germany, July 13–16, 2009

