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1 Introduction

Forecasting macroeconomic variables is a standard task of many applied
economists. A number of economic research institutes and central banks
publish macroeconomic forecasts regularly. Because most macroeconomic
variables are contemporaneous aggregates it is not surprising that a huge
literature exists on forecasting contemporaneously aggregated variables (see
Lütkepohl (2010) for a recent survey). Different predictors have been com-
pared in this literature. Most results refer to linear aggregation with time-
invariant aggregation weights.

On the other hand, in practice, time-varying aggregation weights are very
common. Suppose, for example, that one wants to construct an unemploy-
ment rate series for the European Union (EU) by aggregating the unemploy-
ment rates of the individual EU countries. The overall unemployment rate,
uEU

t , is a weighted average of the individual unemployment rates, u
(i)
t ,

uEU
t =

N∑
i=1

witu
(i)
t . (1.1)

Here N denotes the number of member states and the aggregation weights,
signified as wit, are related to the relative size of the workforce of country i.
Because the relative country sizes change over time, the weights in (1.1) also
have to be time-varying. In fact, the number of EU countries has changed
over the years and is meant to change further in the future when new member
states enter the EU. Hence, one may use for N the maximum number of
states and assign zero weights to those countries which were no members at
a particular time t. Even for periods with a constant number of member
states the weights are related to the workforce in the different member states
which is best viewed as stochastic. Hence, the weights are random variables.
In other words, the EU unemployment rate is a contemporaneous aggregate
with stochastic aggregation weights.

There are many other series where stochastic aggregation weights are
used. For example, there are several proposals for aggregating gross domestic
product (GDP) or its growth rates based on stochastic weights. Suppose

yEMU
t denotes euro-area GDP and y

(i)
t is the corresponding figure for country

i. Then Winder (1997) computes the aggregate growth rates for the European
Monetary Union (EMU) countries as

∆ log yEMU
t =

N∑
i=1

y
(i)
t−1/e

(i)
TB

yEMU
t−1

∆ log y
(i)
t , (1.2)
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where e
(i)
t denotes the exchange rate of country i in period t and TB signifies

a fixed base period. Although no exchange rate is needed for the period
since 1999, when the euro was introduced as common currency, the exchange
rate is required for the pre-EMU period. Winder considers a fixed exchange
rate for the sample period. Alternatively, Beyer, Doornik and Hendry (2001)
propose the aggregate

∆ log yEMU
t =

N∑
i=1

y
(i)
t−1/e

(i)
t−1

yEMU
t−1

∆ log y
(i)
t , (1.3)

which uses a flexible exchange rate for the pre-EMU period. The aggregation
weights

y
(i)
t−1/e

(i)
TB

yEMU
t−1

and
y

(i)
t−1/e

(i)
t−1

yEMU
t−1

are obviously stochastic in both cases.
Yet another proposal for aggregating euro-area data is due to Anderson,

Dungey, Osborn and Vahid (2007) who suggest to account for the structural
adjustments in some of the member states prior to the EMU. They consider
aggregation weights depending on the distance of the economic conditions
in a particular country from those of core countries such as Germany. More
precisely, they specify a distance measure for monthly data for country i,

di,t = min

(
|y(i)

t − ycore
t |

|y(i)
1979M3 − ycore

1979M3|
, 1

)
,

where March 1979 is used as the reference period because it marks the time
where the European Monetary System began. They define the weight of
country i in period t to be

wit = wi,F × (1− di,t),

where wi,F is the weight of country i when full integration is achieved. Thus,
also in this aggregation scheme the weights are stochastic.

Similar ideas can be used to determine other real as well as monetary
aggregates. Further examples of aggregates based on stochastic weights in-
clude price levels and associated inflation rates as well as real macroeconomic
variables such as consumption and investment. Although I have presented
specific examples of EU aggregates, the same or at least similar issues arise
in national aggregates. For instance, price levels or unemployment rates for
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a specific country are obtained from regionally disaggregated data with time-
varying weights. Despite the wide-spread use of aggregates with stochastic
weights, the theoretical literature has primarily focussed on forecasting con-
temporaneous aggregates with fixed, time-invariant weights.

There are also situations where the aggregate is a nonlinear function of
disaggregate components. For example, if the disaggregate components are
modelled in logs, an exponential transformation may be necessary to obtain
the aggregate from the log components. As an example of this type, Hubrich
(2005) compares different predictors for euro-area consumer price inflation
based on aggregated and disaggregated variables in logs.

In this study a general framework is presented for comparing alternative
forecasts for nonlinear aggregates including aggregates with time-varying,
possibly stochastic weights. The basic idea is adapted from Hendry and
Hubrich (2010) who propose to incorporate disaggregate information in fore-
casting an aggregate by using a system of variables comprised of the aggregate
and some disaggregate series. A Monte Carlo study is used to investigate the
small sample properties of the forecasts considered in the theoretical frame-
work and empirical forecast comparisons for European unemployment and
inflation variables are used to illustrate the theoretical results.

The study is organized as follows. In the next section the basic setup is
presented. Theoretical results on alternative predictors for nonlinear aggre-
gates with possibly stochastic weights are discussed in Section 3. A small
sample experiment for investigating practical aspects of using disaggregate
information for forecasting an aggregate with stochastic weights is reported
in Section 4 and empirical forecast comparisons are discussed in Section 5.
Conclusions and possible extensions are presented in Section 6.

The following general notation is used. The lag operator is denoted by
L, that is, for a stochastic process or time series yt, Lyt = yt−1. The nor-
mal distribution with mean (vector) µ and variance (covariance matrix) Σ is
denoted by N (µ, Σ). The sets of integers and positive integers are signified
as Z and N, respectively. The (K × K) identity matrix is denoted by IK .
Moreover, the following abbreviations are used: AR for autoregressive or au-
toregressive process, VAR for vector autoregressive, MA for moving average,
iid for independently identically distributed, OLS for ordinary least squares,
GLS for generalized least squares, DGP for data generating process, MSE
for mean squared error, RMSE for root mean squared error, HICP for har-
monized index of consumer prices, AIC for the Akaike information criterion
and SC for the Schwarz-Rissanen information criterion (see, e.g., Lütkepohl
(2005, Section 4.3) for precise definitions and discussion of these criteria).
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2 Aggregates

Let yt = (y1t, . . . , yKt)
′ be the vector of disaggregate component series and

the aggregate of interest is at = ft(yt). Here ft(·) is a scalar aggregation
function which may be time-varying. In fact, it is straightforward to extend
the discussion to a vector process at. The assumption of a univariate process
is made for clarity and notational convenience. A typical situation is that
ft(yt) = w′

tyt, where wt = (w1t, . . . , wKt)
′ is a vector of stochastic weights.

The process at is assumed to be (covariance) stationary with AR and MA
representations,

at =
∞∑
i=1

θiat−i + vt, t ∈ Z, (2.1)

and

at =
∞∑
i=0

ψivt−i, t ∈ Z, (2.2)

respectively, where vt is a martingale difference white noise sequence with re-
spect to At = {at, at−1, . . . } with time-invariant variance σ2

v . The martingale
difference property implies that the conditional mean E(vt|At−1) = 0.

Notice that for an aggregate at = w′
tyt covariance stationarity holds under

quite general conditions for wt and yt. For example, if the two processes are
both covariance stationary and independent. If they are dependent, as may
be the case in some of the motivating examples in Section 1, time-invariance
of the first and second order moments is also not very restrictive as long
as the two processes are covariance stationary individually. Some properties
of specific aggregates with stochastic weights are derived in Appendix B. It
follows from these results that the properties of aggregates with stochastic
weights are different from those with fixed weights in general. Admittedly
only iid weights wt are considered in Appendix B which may be unrealistic in
many situations of practical interest. Clearly, it is desirable to obtain more
general results. I leave this issue for future research.

Suppose that y∗t is an M -dimensional (covariance) stationary stochastic
process related to yt. It may be equal to yt or it may consist of a subset
of the components of yt. In fact, it may also contain transformations of the
components of yt or, more generally, any variables that are related to yt. It
is assumed that the joint process xt = (at, y

∗′
t )′ is stationary with VAR and

MA representations, respectively,

xt =
∞∑
i=1

Aixt−i + et, t ∈ Z, (2.3)

4



and

xt =
∞∑
i=0

Ξiet−i, t ∈ Z, (2.4)

where the Ai’s and Ξi’s are ((M + 1) × (M + 1))-dimensional coefficient
matrices with Ξ0 = IM+1 and et is a (M + 1)-dimensional martingale dif-
ference with respect to Xt = {xt, xt−1, . . . } with time-invariant, nonsingular
unconditional covariance matrix E(ete

′
t) = Σe.

Nonsingularity of the covariance matrix Σe excludes that any of the com-
ponents of xt is a linear combination of the remaining components. Thus,
if at = w′yt is an aggregate of yt with fixed, time-invariant weights, y∗t = yt

is not possible. However, as long as at least one component series of yt

is missing from y∗t , time-invariant aggregation is covered. Thus, the present
framework can be used for studying forecasts of aggregates with fixed weights
w. In that case y∗t may, for instance, consist of the last K − 1 components
of yt. Defining

F =

[
w′

0 IK−1

]

and xt = Fyt, the first component of xt is the aggregate at. Because F is
nonsingular, no loss in information is incurred by considering the transformed
process xt instead of yt. Hence, any linear transformation of forecasts based
on yt can equivalently be obtained from forecasts of xt.

If the aggregation weights are stochastic, considering the aggregate at in
addition to the disaggregate component series yt, that is, choosing y∗t = yt

leads to an extension of the information set because the information in the
process wt is also incorporated. These considerations imply that the afore-
mentioned framework is useful not only for studying stochastic aggregation
but any form of aggregation which implies a nonsingular joint process xt,
e.g., whenever et has a nonsingular covariance matrix. Thus, this framework
covers general nonlinear aggregates of yt.

The framework is useful even if some of the disaggregate component series
are not available or if they are not known precisely. In that case one may
just include all available component series in y∗t . Also one may include series
in y∗t which are potentially useful indicators for the aggregate. For example,
one may include factors which are computed from a large set of disaggregate
component series. Moreover, the framework can be used if the weights are
deterministic but still have changed over time, e.g., due to a structural break
or a new member in some union.
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Although the basic framework is quite general in many respects, it is re-
strictive in some dimensions. For example, there are no deterministic terms
in the DGPs. They have been dropped for convenience in the present setup
because they are not of much interest for the theoretical comparison of pre-
dictors. Since future values of deterministic terms are known, they do not
contribute to forecast uncertainty. Hence, there is no need to consider them
in comparing predictors. Excluding them in the theoretical analysis is there-
fore not restrictive. Of course, they have to be included when models are
fitted to actual data and this will be done in Sections 4 and 5.

As already mentioned earlier, the assumption that the aggregate at is a
univariate variable is just a convenience. It is not very restrictive because
allowing at to be a vector is a straightforward extension.

A more severe limitation of the present framework is the assumption of
stationarity. Clearly many economic variables have stochastic trends, i.e.,
they are integrated and may have other nonstationarities. If unit roots are
the only source of nonstationarity, this feature can be accounted for by con-
sidering differenced variables. Most of the results discussed in the following
also hold for integrated processes. I will comment on this issue later. For the
initial comparison of different predictors in the next section, the stationarity
assumption is helpful because it simplifies the exposition and analysis.

Assuming that the residuals of the DGPs under consideration are martin-
gale differences is a limitation which may be restrictive because it excludes
potentially interesting nonlinearities. It is also made for convenience because
it implies that optimal predictors are easy to determine. As will be seen in
the next section, the predictors under scrutiny will still be best linear predic-
tors if the white noise processes in the DGPs are at least serially uncorrelated
and not necessarily martingale differences. In that case, the results on the
relative efficiencies of the predictors are maintained.

3 The Predictors

If forecasts of at are desired, there are at least two obvious predictors. Sup-
pose a forecast h periods ahead (an h-step forecast) is of interest in period τ .
The optimal, minimum mean squared error (MSE) forecast based on present
and past values of at is the conditional expectation,

aτ+h|τ = E(aτ+h|aτ , aτ−1, . . . ) =
∞∑
i=1

θiaτ+h−i|τ =
∞∑

i=h

ψivτ+h−i, (3.1)

where aτ+h−i|τ = aτ+h−i for i ≥ h. Thus, the AR form can be used for
computing forecasts recursively for h = 1, 2, . . . , while the last expression
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on the right-hand side of (3.1) is useful for assessing the forecast error. The
corresponding quantity is

aτ+h − aτ+h|τ =
h−1∑
i=0

ψivτ+h−i ∼
(
0, σ2

a(h)
)
, (3.2)

where

σ2
a(h) = σ2

v

h−1∑
j=0

ψ2
j (3.3)

is the forecast error variance which is also the forecast MSE. The fact that
the conditional expectation can be expressed as in (3.1) is a consequence of
the assumption that vt is a white noise martingale difference sequence.

The second obvious predictor for at is based on the full process xt. Let

xτ+h|τ = E(xτ+h|xτ , xτ−1, . . . ) =
∞∑
i=1

Aixτ+h−i|τ =
∞∑

i=h

Ξieτ+h−i (3.4)

be the optimal predictor based on present and past values of xt. Its forecast
error covariance or MSE matrix is

Σx(h) = E[(xτ+h − xτ+h|τ )(xτ+h − xτ+h|τ )
′] =

h−1∑
j=0

ΞjΣeΞ
′
j. (3.5)

The first component of xτ+h|τ is an h-step forecast of aτ+h which will be
denoted by ao

τ+h|τ in the following to distinguish it from aτ+h|τ . The corre-
sponding forecast error has zero mean and variance or MSE

σ2
o(h) = i′Σx(h)i, (3.6)

where i = (1, 0 . . . , 0)′ is a (M + 1)-dimensional vector.
In the literature on forecasting aggregates, a third predictor is occasion-

ally considered. It is based on aggregating univariate forecasts of the dis-
aggregate component series in yt (e.g., Lütkepohl (2010)). In the present
framework, where neither yt nor the aggregation function ft(·) are assumed
to be known, such a predictor is not available in general. Therefore, it is not
considered in the following although there are cases where it may be useful
for practical purposes.

A well-known forecasting result for linearly transformed vectors implies
that

σ2
o(h) ≤ σ2

a(h) (3.7)
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(see, e.g., Lütkepohl (1987)). Moreover, stationarity of at implies that ao
τ+h|τ

and aτ+h|τ become identical for h →∞ and, hence,

lim
h→∞

σ2
o(h) = lim

h→∞
σ2

a(h) = E(a2
t ). (3.8)

Thus, the two predictors are equally efficient for long-term forecasting.
In fact, they may also be equal, and, hence, equally efficient under any

loss function, for short forecast horizons. This will hold under very restrictive
conditions for the DGP of yt and the weighting scheme wt. This fact is
known already from the time-invariant wt = w 6= 0 case. For that case, by
Proposition 4.1 and Corollary 4.1.1 of Lütkepohl (1987),

ao
τ+h|τ = aτ+h|τ for all h ∈ N ⇔ w′Φ(L) = ψ(L)w′, (3.9)

where Φ(L) =
∑∞

i=0 ΦiL
i and ψ(L) =

∑∞
i=0 ψiL

i are the MA operators of yt

and at, respectively. The condition in (3.9) is quite restrictive. For example,
if the components of yt are independent and, hence, Φ(L) is a diagonal op-
erator, equality of the predictors requires that all components with nonzero
weight have identical MA operators and are, hence, homogeneous processes as
far as their autocorrelation properties are concerned (e.g., Lütkepohl (1987,
Corollary 4.1.2)). In other words, if Φ(L) is diagonal and the diagonal ele-
ments of Φ(L) are denoted by φkk(L), k = 1, . . . , K, and all elements of w are
nonzero, φkk(L) = ψ(L) must hold for k = 1, . . . , K for the predictors based
on the disaggregated process and the aggregated process to be identical.

These considerations show that equality of ao
τ+h|τ and aτ+h|τ for all h holds

only under very restrictive conditions. However, for practical purposes, using
the predictor based on the aggregated process directly may be justified even
if predictor equality holds only approximately. Even that requires a very
special DGP of the disaggregate process yt, however, and, hence, for the
case of a time-invariant aggregation scheme, gains from using disaggregated
information for short-term forecasting seem likely in typical situations. For
long-term forecasts of stationary variables the disaggregate information is
not helpful, however, because ao

τ+h|τ and aτ+h|τ will be similar or identical
for large h.

For the general case, where at = ft(yt), the discussion in Section 4.2.4 in
Lütkepohl (1987) shows that equality of the two predictors, ao

τ+h|τ = aτ+h|τ
for all h ∈ N, holds if and only if y∗t does not Granger-cause at or, in other
words, if there are no lagged y∗t ’s in the at equation in (2.3). Thus, for the
examples considered in the introduction, the forecast based on the disaggre-
gate information is generally superior to aτ+h|τ because the components of yt

are included in at and, hence, are likely to enter the at equation in the model
for xt.
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If the variables of interest have unit roots and are, hence, integrated,
these general results will still hold because stationarity can be achieved by
differencing. Since forecasts for the levels of the variables can be obtained di-
rectly from forecasts of the changes it is in fact enough to focus on stationary
processes for deriving theoretical results which also hold for MA processes
with unit roots. MA unit roots are permitted, for example, in deriving the
superiority of the forecast based on disaggregate components, that is, the
result in (3.7). Also the condition for equality of predictors in (3.9) holds if
Φ(L) is noninvertible (see Lütkepohl (1987)). Thus, even if all components
are differenced individually without regard of possible cointegration, the pre-
vious theoretical analysis remains valid. For practical purposes one may still
work with the levels VAR version of the process and avoid the detour via the
differences. What does not hold for integrated processes is the convergence
of the forecast MSEs in (3.8). In other words, even for long-term forecasting,
ao

τ+h|τ may be superior to aτ+h|τ if at has a unit root.

Hendry and Hubrich (2010) consider this framework although they as-
sume time-invariant aggregation weights throughout much of their theoreti-
cal analysis. They consider the predictors ao

τ+h|τ and aτ+h|τ for U.S. inflation.

Note, however, that the main focus of Hendry and Hubrich (2010) is an anal-
ysis of the impact of various types of model deficiencies.

Although the previous results suggest that theoretically a forecast of the
aggregate should always be based on the disaggregate process xt because the
components of yt are part of the aggregate and, hence, are related to at and
supposedly should have a Granger-causal relation to at, the situation is more
difficult in practice, as pointed out by Hendry and Hubrich (2010). The the-
oretical results refer to correctly specified models with known coefficients. In
practice, models for the DGPs involved have to be estimated and specified
on the basis of the available sample information. As shown already by Lütke-
pohl (1987), estimation and specification uncertainty can reverse the ranking
of the MSEs of the two predictors. In fact, if a large set of component series
is aggregated, specifying a joint multivariate model for the components and
the aggregate may not be feasible because of degrees of freedom limitations.
Even if just a moderate number of components is considered, fitting a multi-
variate model may involve estimation of many more parameters and, hence,
a much larger estimation uncertainty than fitting a univariate model to the
aggregate only. Thereby the forecast based on the disaggregate information
may become inferior to the one based on the aggregate directly. There-
fore Hendry and Hubrich (2010) propose to limit the number of components
included in the multivariate model. For example, for an inflation forecast
one may include only the most important sub-index information rather than
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considering all sectoral indices. Alternatively, one may summarize the infor-
mation of a large number of components in a small number of factors which
are included in the multivariate model. These possibilities will be explored
in Section 5 in forecasting euro-area inflation.

Before empirical examples based on economic data are considered, the
small sample implications of including disaggregate information in the fore-
cast for an aggregate based on stochastic weights will be investigated in a
Monte Carlo study in the next section.

4 Monte Carlo Experiment

The foregoing discussion suggests that forecast improvements for an aggre-
gate will be determined to some extent by the number of disaggregate com-
ponent series which are included in the information set. Clearly, the optimal
number will depend on factors such as the underlying DGP of the disag-
gregate components, the aggregation weights and the available sample size.
Specification and estimation uncertainty will play a crucial role in practice.
Therefore I have conducted a small Monte Carlo experiment for investigat-
ing the impact of these factors in an ideal environment before real data are
analyzed in Section 5.

4.1 Monte Carlo Setup

I use the following simulation setup which is summarized in Table 1. The
disaggregate component series are generated by a VAR(1) process,

yt = ν + A1yt−1 + ut, (4.1)

where A1 = diag(α1, . . . , αK)′ is a diagonal matrix, ut ∼ N (0, IK) is an
iid Gaussian white noise process with independent components and iden-
tity covariance matrix. The components of yt are independent. Hence, each
component contains additional information. Of course, this does not mean
that the additional information is valuable enough in forecasting the aggre-
gate in order to compensate for the additional specification and estimation
uncertainty incurred by an increase in the dimension of the model used for
forecasting.

The aggregation weights wt are generated by drawing random vectors w∗
t

from a K-dimensional normal distribution,

w∗
t ∼ N (µ, σ2IK),
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Table 1: Data Generation Processes Used in Monte Carlo Simulations

DGP K ν A1 µ′ σ
1 5 0 diag(0.8, 0.8, 0.8, 0.8, 0.8) (10, 5, 5, 5, 5) 0.1
2 5 0 diag(0.95, 0.8, 0.5, 0.4, 0.3) (10, 5, 5, 5, 5) 0.1
3 5 0 diag(0.9,−0.9, 0.5,−0.5, 0.5) (10, 5, 5, 5, 5) 0.1
4 5 0 diag(0.95, 0.8, 0.5, 0.4, 0.3) (10, 5, 5, 5, 5) 1.0

replacing all negative elements by zero and then defining

wt = w∗
t

/
K∑

k=1

w∗
kt .

Thus, for each time period t, the components of wt are nonnegative and sum
to one and, hence, have standard properties of aggregation weights. The
mean vector µ is chosen such that the first component has a larger weight
on average than the other ones. Again, different weights are not uncommon
in practice. I have specified relatively large values of the components of
µ and a small standard deviation σ for the first three DGPs so that the
variation in the aggregation weights from one period to the next tends to be
small. Small changes in the aggregation weights over time seem to be typical
for many aggregates in practice. The larger variability in the aggregation
weights of DGP 4 is considered to study the impact of more volatile weights.
Generally, the aggregation schemes used in the simulations are meant to
mimic aggregates relevant for empirical work.

Choosing normally distributed weights ensures that they cluster around
the mean while occasional values farther away are not excluded. Of course,
one could think of other generating mechanisms. Ideally it would be useful
to investigate the aggregation schemes of actually observed time series in
detail and then explore generation mechanisms for the simulated weights
accordingly. A more in depth exploration of actual aggregation weights is
beyond the scope of this study and is left for future research.

The DGPs for the disaggregate components, yt, used in the simulations
are summarized in Table 1. The first DGP consists of independent compo-
nents with identical coefficients. For such a process, using the disaggregate
components does not result in forecast efficiency gains if the aggregation
weights are time-invariant. Given the relatively small changes in the aggre-
gation weights for DGP 1, the disaggregate information is expected to be of
limited value for forecasting the aggregate. In fact, specification and esti-
mation uncertainty may dominate and reduce the efficiency of multivariate
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forecasts. Notice, however, that in this case at is also an AR(1) if the ag-
gregation weights are fixed, whereas at is an ARMA(1,1) if the aggregation
weights are stochastic, as shown in Appendix B. For our choice of parameter
values it is well approximated by an AR(1), however.

DGPs 2 and 3 have inhomogeneous components. Taking them into ac-
count may improve the forecast RMSE of the aggregate. In DGP 3 the AR
coefficients of two components are even negative. Hence, the serial correlation
structure of these components is very different from that of the remaining
ones. It follows from the results in Appendix B that for these processes
at has properties quite different from an AR(1). Although in a panel of
component series it may be more common that the components have simi-
lar serial correlation properties, there are also cases where the components
are quite distinct. Price indices may serve as an example. For instance,
the DGP for energy prices may be quite different from that of food prices.
Thus, using a DGP with quite different components may provide relevant
insights for applied work. Also negative AR coefficients are not uncommon
in seasonal series. Hence, including such processes may be reasonable. Fi-
nally, the fourth DGP has the same VAR parameters as DGP 2 but a larger
variance of the aggregation weights. In this case the standard deviation is
σ = 1.0. Although such a large variability of the weights may be unrealistic
for most aggregates, it is used here to study the impact of large variation in
the weights. In all DGPs the component series are independent so that they
individually contain additional information.

The simulations are intended to disclose the value of disaggregate informa-
tion relative to additional specification and estimation uncertainty incurred
by adding component series in the forecasting model. The first component
of yt is always used in y∗t and then the other components of yt are added to
y∗t according to their position number. As mentioned previously, the weights
attached to the different components differ. The first component of yt has
a larger weight in all four DGPs. Adding it first in y∗t mimics the situation
that the forecaster knows which components have a larger weight in the ag-
gregate and, hence, may be more important. In the empirical examples in
Section 5, some information on the importance of the individual components
is obviously available. It may be difficult to give a full ranking of the compo-
nents of yt according to their importance, however. This is in line with the
situation in the four DGPs in Table 1 where the last four components have
equal average weight.

Samples of different sizes are used. In each case the simulations of the
yt are started from an initial vector of zero and the first 50 observations are
discarded to reduce the impact of the startup values. In the following, T
denotes the net sample size used for estimation and forecasting. In other
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words, additional presample values are used in the estimation and possibly
lag order selection. The actual presample values considered depend on the
lag order. Only full VAR models with a constant term are fitted in the
Monte Carlo study. The number of replications for each design is 5000. All
computations are performed with MATLAB programs.

4.2 Monte Carlo Results

Monte Carlo results for different forecast horizons and sample sizes are pre-
sented in Figures 1 - 5. Figure 1 shows results based on DGP 1. It presents
the percentage deviations of forecasts based on different numbers of disaggre-
gate components from the RMSE of the corresponding AR forecast for the
aggregate. In other words, different y∗t vectors are considered. Results for
different lag orders and forecast horizons h = 1 and 6 are shown. For VAR
order p, the AR models for the aggregates are also based on order p although
the true DGPs are infinite order processes. The sample size underlying the
results in Figure 1 is T = 100. Thus, the sample size has a typical order of
magnitude for macroeconomic studies.

Given the structure of DGP 1, the situation is close to the one described
in Section 3 where no forecast efficiency gains from using disaggregate in-
formation are obtained. Hence, the RMSE deviations from the RMSE of
the univariate forecast for the aggregate are primarily due to estimation un-
certainty and to a limited extent to approximation errors for the aggregate.
Hence, it is not surprising that disaggregation reduces the forecast accuracy.
In fact, the RMSEs increase with the number of disaggregate components
included in the model. Moreover, increasing the VAR order reduces the esti-
mation precision and, hence, increases the forecast RMSE. The damage from
using disaggregate information is slightly reduced when the forecast horizon
increases.

Figure 2 shows the impact of the sample size. It is based on the same
DGP as Figure 1 but uses sample sizes of T = 250. The general picture
is the same as in Figure 1. The losses due to estimation are substantially
reduced, however. In other words, the forecast RMSEs still increase with the
VAR order and the number of disaggregate component series, but now the
efficiency loss is much smaller than in Figure 1.

DGP 2 has heterogeneous component series and, hence, without estima-
tion uncertainty, using disaggregate information should reduce the forecast
RMSE. In Figure 3 it can be seen that this is indeed the case even when
estimated processes are used. The figure is again based on samples of sizes
T = 100. For forecast horizon h = 1, using disaggregate information clearly
improves the forecast precision for VAR order 1. The best forecasts are ob-
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tained when only two disaggregate components are considered. Using more
disaggregate information is still better than forecasting the aggregate directly
but leads to reduced forecast precision relative to a model for the aggregate
and two disaggregate components. When more lags are considered or larger
forecast horizons are of interest, the smallest RMSE is obtained with only one
additional disaggregate component. In fact, with more lags, the use of disag-
gregate information becomes again detrimental. For example, when VAR(4)
models are used, adding more than one disaggregate component results in
forecasts which are inferior to the corresponding univariate forecast for the
aggregate.

For DGP 3 the components are very heterogeneous. This is reflected
in Figure 4 in the more substantial gains in forecast precision due to using
disaggregate information. Note in particular the change in scale in Figure
4 relative to the other figures. For 1-step forecasts, gains relative to a uni-
variate model for the aggregate are obtained even if large models with four
lags and all five disaggregate components (i.e., 6-dimensional models) are
considered. Even in this case, including two disaggregate components gives
the best 1-step forecasts. With fewer lags, more components improve the
forecast efficiency. The situation is somewhat different for 6-step forecasts
for this DGP. For such large forecast horizons there is not much to gain from
disaggregation except when very few lags are considered.

For DGP 4 the RMSE deviations from the corresponding quantities based
on univariate forecasts for the aggregate are very similar to those presented
in Figure 3 for DGP 2. Therefore I do not present them in detail here. The
actual RMSEs are quite different of those for DGP 2, of course, because
the variance of the aggregate is different. The relative RMSEs are very
similar, however. In other words, for the presently considered aggregation
schemes, the variability in the weights appears to be of limited importance
for the potential relative gains or losses from using disaggregate information.
I will return to this issue in the next paragraph where lag order selection is
discussed.

The previous simulations show the impact of estimation uncertainty and
possibly approximation error, given that the aggregate is not a finite order
AR process (see Appendix B). The results in Figure 5 address the effects of
model selection. The figure shows percentage deviations of RMSEs of 1-step
forecasts based on VARs selected by AIC and SC with maximum lag order
pmax = 4. The benchmark model is an AR model for the aggregate with lag
order chosen by AIC in the upper panel and with SC in the lower panel of
Figure 5. The actual results shown in the figure are the percentage devia-
tions of the RMSEs of the higher dimensional models from the corresponding
RMSEs of the benchmark models. The sample size is again T = 100. Taking
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into account the change in scaling, the losses and gains for DGPs 1 and 2
are similar to those in Figures 1 and 3 when VAR order p = 1 is used. In
contrast, the RMSE gains due to disaggregate information in Figure 5 are
much smaller for DGP 3 than those for the VAR(1) case in Figure 4 although
they are still much better than for VAR order 4, say. The differences to the
results in Figure 4 may be partly due to a better approximation of the DGP
for the aggregate. Hence, if the actual VAR order is unknown, model se-
lection criteria are helpful for reducing the parameter space and improving
forecast efficiency although there will be some losses due to specification un-
certainty. The results for DGP 4 are similar to those for DGP 2. The gains
from disaggregation are slightly larger for DGP 4 than for DGP 2. Overall
the larger variability in the aggregation weights does not affect the relative
forecast precision much, however, as in the case with prespecified lag orders.

For the present DGPs, both AIC and SC deliver roughly the same results.
Given the simple VAR(1) structure of the disaggregate components, this
outcome is not surprising, of course. For processes with more complicated
correlation structure, the results based on AIC and SC may, of course, be
different. Because the simulation results suggest that parsimony may be
valuable for forecast precision, the SC criterion may be preferable.

In summary, the Monte Carlo results show that, depending on the proper-
ties of the DGP, using disaggregate information can be valuable for improving
forecast precision for an aggregate. In particular, if the disaggregate compo-
nents are rather homogenous adding many of them can be detrimental to the
forecast accuracy, however. Thus, to obtain actual gains in forecast RMSE
over a univariate forecast for the aggregate, limiting the parameter space
by considering a small number of disaggregate components and/or a small
number of lags is advantageous if samples of typical sizes in macroeconomics
are available. Of course, if large samples are available and the disaggregate
components are heterogeneous, adding more of them to the model may be a
useful strategy for improving forecasts of the aggregate. Finally, depending
on the persistence of the DGP, little or no gains can be expected from using
disaggregate information for long-term forecasting of stationary DGPs.

5 Empirical Forecast Comparisons

I use two datasets to explore the empirical relevance of the previous results.
In both cases the aggregates can be thought of as having stochastic weights.
The first one consists of euro-area unemployment rates and the second one
is based on EMU inflation rates.
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5.1 Unemployment

The dataset consists of monthly, seasonally adjusted unemployment rates
for the euro-area (at) and 10 individual euro-area countries for the period
1995M1-2008M12. Thus, given the relatively large number of component se-
ries, I consider only a subset of the 16 EMU countries for which the aggregate
at is computed. A number of smaller countries have been eliminated because
their relative weight in the overall unemployment rate is limited. Details of
the data and data sources are given in Appendix A.

I have fitted AR and VAR models to the overall euro-area unemployment
rate and subsets of the available country series. Clearly including all 11 series
in a full VAR would have severely reduced the degrees of freedom. One of the
questions of interest in the following is how many series should be included
in a model that accounts for disaggregate information. Hence, systems of
different dimensions will be explored. All AR and VAR models are based
on the levels unemployment rate series although unit roots are not rejected
by standard tests for some country rates. As I have argued in Section 3,
unit roots are no problem if AR and VAR models are used for forecasting.
Whether they can be utilized to improve forecasts is not the focus of this
study. If not accounting for unit roots reduces forecast efficiency, it will
affect all predictors although perhaps not to the same extent.

Because the simulation results suggest that parsimonious models may be
beneficial for forecasting, I fit full and subset AR and VAR models with an
intercept. The maximum order is set at pmax = 6 because this order ap-
pears to be large enough to capture much if not all of the serial dependence
structure for the systems considered. When full AR and VAR models are
considered the actual model order is chosen by a model selection criterion.
As in the simulations in Section 4, AIC and SC are used for this purpose.
Estimation of full models is done by OLS. When subset models are used,
the subset restrictions are determined by a sequential elimination strategy
for each equation separately when multivariate models are considered. The
sequential procedure proceeds by estimating an equation by OLS and elimi-
nating the regressor with the smallest absolute t-value. Then the restricted
model is estimated and the next regressor with the smallest absolute t-ratio is
eliminated until all absolute t-ratios are greater than 1.96. Thus, an asymp-
totic 5% significance level is used as a threshold for eliminating regressors in
the subset models. Once all zero restrictions for all the equations of a given
model are determined, the restricted model is reestimated by GLS with the
OLS covariance estimator of a full model with order pmax (see, Section 5.2.2
of Lütkepohl (2005) for details on the GLS procedure).

Following Hendry and Hubrich (2010), I also consider models with factors
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which are computed as principal components from all 10 disaggregate coun-
try data. They present another way of obtaining parsimonious models. The
factors are computed on the basis of the sample available for model specifica-
tion and estimation. They are recomputed whenever the sample is extended
by an observation. Then VAR models are fitted for the aggregate and one or
more factors. Again full and subset VAR models are considered for systems
including factors. The previously described specification procedures are used
here as well.

Forecasts are computed based on models fitted to increasingly larger sam-
ples. The last four years are set aside for the forecast comparison. Thus, the
first set of models is based on samples from 1995M1-2004M12 (i.e., 120 ob-
servations). Based on these models 1- to 12-step forecasts are produced for
the period 2005M1-2005M12. Then one observation is added to the sample
and model specification and estimation is repeated for all models. Thereby
48 1-step, 47 2-step etc. out-of-sample forecasts are produced and used for
computing RMSEs. Notice that whenever the sample is increased by a new
observation, a full new specification and estimation is performed and also new
factors are computed. It is also worth emphasizing that multi-step forecasts
are computed recursively as in Section 3 (see Equations (3.1) and (3.4)).

Relative forecast RMSEs for a number of different models and forecast
horizons h = 1, 6 and 12 are presented in Table 2, where the univariate AR
model specified with the parsimonious SC is used as a benchmark. In other
words, numbers smaller than one in the table indicate that the corresponding
model produced a smaller RMSE than the univariate full AR model for at for
which SC has been used for lag order selection. The following observations
emerge from Table 2:

1. Univariate models for the aggregate unemployment rate based on AIC
and SC produce the same RMSEs, that is, AIC and SC select the same
AR orders (all relative RMSEs of the AIC-AR model are 1).

2. Adding disaggregate individual country variables in the full VAR mod-
els helps reducing the RMSEs up to a certain point. The bivariate full
VAR models with the aggregate EMU rate and the German rate pro-
duce substantially better forecasts than the univariate models. When
more variables are added, RMSEs tend to go up, as in the simulations
in Section 4. For example, the five-dimensional model comprised of the
EMU, German, French, Spanish and Italian rates produce substantially
larger RMSEs for all three horizons than the bivariate models.

3. Subset VAR models do not improve forecasts of univariate models and
low-dimensional systems. They produce lower RMSEs than the cor-
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responding full VAR models in some cases for 4- and 5-dimensional
systems. Hence, parsimony considerations become important when the
number of component series increases. This result can also be seen in
Figure 6, where the RMSEs of subset VARs relative to the correspond-
ing full VARs are shown. The subset models have a clear advantage
only for the five-dimensional system.

4. The previous observation suggests that factor models may be useful to
include information from a larger number of individual country vari-
ables. This is true only partially, however. Bivariate models with
one factor produce reasonably small RMSEs when full VAR models
are used. Adding a second factor leads to substantially larger RMSEs
across all models. In fact, the two-factor models are substantially in-
ferior to the benchmark models. Hence, they do not even improve on
direct univariate forecasts of the aggregate. Generally, specifying factor
models with subset procedures leads to poor forecasts. Of course, this
result may be a consequence of constructing the factors by principal
components. Considering other factors may be worthwhile.

In summary, the forecasting results for the euro-area unemployment rate
are in line with the theoretical and simulation results. They confirm that
disaggregate information is valuable for improving forecasts as long as the
disaggregate models do not get very large. If too much disaggregate informa-
tion is included in the model, the lack of parsimony may become an obstacle
at the specification and estimation stage and the resulting models may lead
to substantially inferior forecasts for the aggregate.

5.2 Inflation

The second example considers consumer price indices. The dataset consists of
monthly, seasonally unadjusted euro-area HICP series for the period 1990M1-
2008M12. The euro-area HICP is obtained from the individual countries’
HICPs with weights based on the countries’ relative household expenditure
shares which are updated annually. Thus, the weights may be viewed as
stochastic although they do not change every month. HICPs from 1990M1
are available for the aggregated euro-area and seven individual countries:
Austria (A), Finland, France (F), Greece, Italy (I), Netherlands (NE) and
Portugal. Only shorter HICP series are available for the other EMU member
states. Therefore the first forecasting experiment is based on eight series
which include the euro-area HICP. Details on the variables and data sources
are again provided in Appendix A. From each price index, say pt, I have
computed an annual inflation rate as (pt−pt−12)/pt−12, that is, I use the actual
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rate and not the approximation based on annual differences of logarithms.
Results by Lütkepohl and Xu (2010) suggest that using levels rather than
logarithms of price indices may be preferable for forecasting. All forecasting
models are based on the inflation rates rather than the price indices. Thereby
I lose one year of data. That is, the full sample for the inflation rates is
1991M1-2008M12.

There is little seasonality left in the inflation rates. I have still considered
higher order models in this case to capture remaining seasonality. More
precisely, I have used lag orders of up to 14. No further precautions for
seasonality are considered, however. All AR and VAR models used in the
following forecast comparison contain a constant but no trends or seasonal
dummies.

The modelling and estimation strategy is the same as for the unemploy-
ment rates. The last four years are used for the forecast comparison. Thus,
1-step RMSEs are again based on 48 forecasts while 12-step forecast RMSEs
are based on only 37 forecasts. Forecast horizons from h = 1 to 12 are used
as for the unemployment rates.

My forecast experiment bears some similarity to that of Hendry and
Hubrich (2010). A main difference is, of course, that I consider European
inflation while the latter authors study U.S. inflation. Moreover, I use region-
ally disaggregated data whereas Hendry and Hubrich (2010) use sub-indices.
Also, I do not consider structural change although it may be present due to
the introduction of the euro within the sample period.

Forecast RMSEs relative to univariate AR models for the aggregate based
on SC for a range of different models are presented in Table 3. Although the
combinations of countries used in the table may seem a bit arbitrary, the
results are representative for other systems as well. The bivariate systems
were chosen because France and Italy are the largest countries in the panel
and, hence, are expected to have the greatest impact on euro-area inflation.
It turned out that the corresponding bivariate models indeed lead to the
smallest 1-step RMSEs. I have experimented with a number of other com-
binations of country specific inflation rates and found qualitatively similar
results to those shown in Table 3. The following observations emerge from
the table:

1. Full AR/VAR models tend to outperform the more parsimonious subset
VAR models. In fact, only for 1-step forecasts the univariate subset
model outperforms the other models. In all other cases, the subset
models are inferior to at least one of the other forecasts based on full
models.

2. The more profligate full AIC models outperform the more parsimonious
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competitors for 1-step forecasting and also tend to be superior to the
corresponding SC models for longer-term annual forecasts (12 steps
ahead). On the other hand, the 6 months forecasts of the univariate
SC benchmark model are apparently hard to beat. Only the bivariate
SC-VAR model based on the EMU and French series produced a slightly
better RMSE.

3. Increasing the number of disaggregate components tends to improve
the 1-step and 12-step forecasts up to a certain point after which the
forecast RMSEs increase. For example, for the full models, the AIC-
VAR for the overall inflation rate and three country series has the
smallest 1-step and 12-step RMSEs whereas adding another component
leads to an increase in the RMSEs.

4. The AIC model with one factor produces the lowest 1-step RMSE
whereas for larger forecast horizons the factor models do not improve
on the forecasts of the univariate benchmark model.

Because the improvements over the univariate benchmark model are in
no case impressive, I have also considered using sub-indices instead of dis-
aggregate country data. Euro-area inflation forecasts based on aggregating
sub-indices have also been investigated by Hubrich (2005). In contrast to the
approach used in the following, she does not include the overall HICP infla-
tion in her multivariate disaggregate model for the sub-indices. As discussed
in Section 2, using the aggregate and disaggregate components in one model
is covered by the present framework even if the weights of the sub-indices are
time-invariant, as long as only a subset of sub-indices is included. The HICP
is basically a Laspeyres index based on a fixed basket. Hence, the weights
for sub-indices are theoretically constant. In practice, new items are added
occasionally, however, which may affect the weighting scheme. The virtue
of the present approach is that it permits to take advantage of the informa-
tion in the available component series without knowing the exact weighting
scheme. The dataset consists of the overall price index and eight sub-indices.
Details are again presented in Appendix A.

Using this dataset I have produced forecasts for inflation rates in the same
way as for the dataset with individual country data. Results are presented
in Table 4. Overall they are surprisingly similar to those in Table 3. In other
words, generally subset models do not perform well and sizable improvements
in short-term forecast accuracy are obtained by using full AIC-VAR models.
In contrast to the previous data set, SC-VAR models now deliver the best
12-step forecasts. The optimal 12-step forecast is actually obtained with a
bivariate model for the overall index and one factor.
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In summary, parsimony has an advantage in particular for longer-term
forecasting, where parsimony refers to both the model order and the number
of component series included in the model. Using either a very small number
of components or a factor which summarizes the information in a larger set
of HICP components leads to forecast improvements. For short-term fore-
casting the situation appears to be somewhat different in that more heavily
parameterized models with larger VAR orders and more components tend to
perform better than very small models. However, even for short-term fore-
casting adding too many components in the models is detrimental to forecast
precision. These results are overall in line with those of Hendry and Hubrich
(2010) for U.S. inflation. They also found that disaggregate information can
help improving inflation forecasts. In contrast, Hubrich (2005) did not find
disaggregation helpful for improving forecast accuracy. Her result is based on
five disaggregate components and highlights the advantage of including the
aggregate and a small subset of disaggregate components in the forecasting
model as done in the present study.

6 Conclusions and Extensions

In this study a framework is presented for analyzing forecasts for aggre-
gated variables obtained by nonlinear and possibly stochastic aggregation.
Such aggregates are common in economics. Both regional and sectoral ag-
gregates of variables such as price indices, output, income, consumption or
unemployment may serve as examples. The main advantage of the proposed
framework is that the precise form of aggregation and in particular the ag-
gregation weights may be unknown, as is often the case in practice. Using
the proposed setup, forecasts based on the aggregate directly and forecasts
which take into account at least some of the disaggregate information are
compared theoretically and via simulations. It is found that theoretically
forecasts that take into account disaggregate information will generally lead
to more efficient forecasts in terms of MSE. In practice, including too many
disaggregate components can lead to efficiency losses because specification
and estimation uncertainty will increase with the number of disaggregate
components in the model used for forecasting. Hence, the additional infor-
mation content in further disaggregate components may be insufficient to
compensate for increases in specification and estimation uncertainty.

Two examples are considered to illustrate the practical relevance of the
theoretical analysis. The first one is based on the euro-area unemployment
rate. It is found that using disaggregate information from the individual
member states may result in forecast improvements if the number of compo-
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nent series is small and parsimonious models are fitted. These results are in
line with the simulation evidence obtained from artificial DGPs. The second
example is based on EMU inflation and also illustrates that the information
in disaggregate price indices for different countries or different sectors helps
to improve forecasts as long as small numbers of component series are used
for forecasting.

The study suggests a range of future research topics. For example, in the
simulation study I have considered very simple generation mechanisms for
the aggregation weights. In particular, I have used iid weights. It is not clear
that the results obtained in this way generalize to more complex generation
processes of the weights. For example, aggregation weights may be serially
dependent. Assuming, for instance, that they are generated by random walks
and are hence highly persistent may be plausible for some aggregates. Ideally
it would be useful to explore the actual aggregation weights of common ag-
gregates and consider more realistic DGPs for the aggregation weights. More
generally, a better understanding of the role of the DGP of stochastic aggre-
gation weights for forecast precision is desirable. In Appendix B very limited
results are presented related to the properties of the DGP of the aggregate
when the disaggregate components are generated by a standard VAR and
the aggregation weights are stochastic. More general results may provide a
better understanding of the implications of particular aggregation methods
and schemes.

Moreover, it may be of interest to determine the optimal level of disag-
gregation. Given the results of this paper, it will depend on the DGP of
the variables of interest and, hence, optimal disaggregation is ultimately an
empirical question. Still, it may be possible to find characteristics of com-
ponent series which give an indication that they may be helpful in a model
for the aggregate. Furthermore, it may be possible to use statistical criteria
for deciding whether a particular disaggregate component series is useful for
improving the precision of a disaggregate forecasting model. In the empirical
examples I have used subset VAR procedures as a simple device for selecting
more parsimonious models. There may be better ways to reduce the dimen-
sionality of the parameter space in the present situation. Such questions are
left for future research.

Appendix A. Data and Their Sources

All data were extracted from the Statistical Data Warehouse of the European
Central Bank. The original source is Eurostat. The precise specifications for
the two datasets are as follows.
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Unemployment rates

The series are standardized unemployment series as collected by Eurostat.
All ages and males and females are included. The series are monthly fre-
quency. They are seasonally adjusted by Eurostat but not working day ad-
justed. The total sample period is from January 1995 to December 2008.
The following eleven series are included in the panel: Euro-area 16 (fixed
composition), Austria, Belgium, Germany, Spain, Finland, France, Ireland,
Italy, Netherlands, Portugal.

HICP consumer prices

The series are harmonized consumer prices at monthly frequency as collected
by Eurostat for the euro-area (changing composition). They are neither sea-
sonally nor working day adjusted. The monthly values of annual inflation
rates are obtained from a price index pt as (pt − pt−12)/pt−12. The sample
period for the price index data is from January 1990 to December 2008 and,
hence, the inflation rates range from January 1991 to December 2008. The
base year is 2005. HICP series from the following seven countries are consid-
ered: Austria, Finland, France, Greece, Italy, Netherlands and Portugal. In
addition overall euro-area HICP is used in the first dataset. The factors are
computed from all seven country series.

The following seven series are included in the panel underlying the sec-
torally disaggregated dataset: HICP - Overall index, Food including alcohol
and tobacco, Processed food including alcohol and tobacco, Unprocessed
food, Industrial goods excluding energy, Energy, Services. The factors are
computed from the following five series: Processed food including alcohol
and tobacco, Unprocessed food, Industrial goods excluding energy, Energy,
Services.

Appendix B. Properties of Aggregates with

Stochastic Aggregation Weights

Suppose the aggregation weights wt ∼ (µ, Σw) are iid vectors which are
independent of yt. Then the aggregate at = w′

tyt has the following properties:
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1. E(at) = µ′E(yt) and

cov(at, at−j) = E[w′
t(yt − Eyt)w

′
t−j(yt−j − Eyt−j)]

= E[tr{(yt − Eyt)(yt−j − Eyt−j)
′wtw

′
t−j}]

= tr{E[(yt − Eyt)(yt−j − Eyt−j)
′]E[wtw

′
t−j]}

=

{
tr{cov(yt, yt−j)(Σw + µµ′)} for j = 0,
tr{cov(yt, yt−j)µµ′} for j 6= 0.

Thus, at is covariance stationary if yt has this property.

2. If yt is a finite order MA(q) process, then the same is true for at because
of the mean and covariance properties given under 1.

3. If yt = ρIKyt−1 + ut is a VAR(1), where ut ∼ (0, σ2
uIK) is white noise,

that is, yt has uncorrelated components with identical correlation struc-
ture and wt ∼ (µ, σ2

wIK), then

E(atat−j) =





σ2
u

1− ρ

(
Kσ2

w +
K∑

k=1

µ2
k

)
for j = 0,

ρjσ2
u

1− ρ

K∑

k=1

µ2
k for j 6= 0.

Thus, at has an ARMA(1,1) autocovariance structure and is not an
AR(1) for σ2

w 6= 0. It is close to having AR(1) dynamics if σ2
w is small

relative to
∑K

k=1 µ2
k, however. Note that this result contrasts with the

case of constant aggregation weights, where σ2
w = 0. In that case, if yt

has the simple VAR structure assumed here, the aggregate is an AR(1).

4. If yt = diag(ρ1, . . . , ρK)yt−1 + ut, at will in general not be an AR(1).

These properties are useful to know in assessing the DGPs used in the
simulations in Section 4.
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Table 2: Forecast RMSEs for Euro-Area Unemployment Relative to Univari-
ate AR Model Selected by SC

forecast horizon
Model type Model 1-step 6-step 12-step
full AR/VAR SC-VAREMU,D 0.9504 0.8227 0.6737

SC-VAREMU,D,F,E 0.9773 0.7716 0.6966
SC-VAREMU,D,F,I 0.9847 0.8629 0.8801
SC-VAREMU,D,F,E,I 1.2519 1.1613 1.1370
SC-VAREMU,f1 0.9466 0.8006 0.6818
SC-VAREMU,f1,f2 1.1357 1.3319 1.5271

AIC-AREMU 1.0000 1.0000 1.0000
AIC-VAREMU,D 0.9227 0.8080 0.6508
AIC-VAREMU,D,F,E 0.9293 0.7144 0.5847
AIC-VAREMU,D,F,I 0.9627 0.8006 0.7905
AIC-VAREMU,D,F,E,I 1.0799 0.9854 0.9610
AIC-VAREMU,f1 0.9321 0.7949 0.6829
AIC-VAREMU,f1,f2 1.0727 1.1313 1.3272

subset AR/VAR AREMU 1.0090 1.0324 0.9975
VAREMU,D 1.1334 1.1796 0.9522
VAREMU,D,F,E 1.0145 0.7167 0.6257
VAREMU,D,F,I 1.2888 0.9137 1.0663
VAREMU,D,F,E,I 1.2351 0.8028 0.9235
VAREMU,f1 1.0505 0.9154 1.0643
VAREMU,f1,f2 1.2047 1.0526 1.2614

Notes: Total sample period: 1995M1-2008M12; forecast period: 2005M1-
2008M12; maximum lag order pmax = 6; EMU – European Monetary Union
(euro-area), D – Germany, F – France, E – Spain, I – Italy; f1 – first factor,
f2 – second factor.
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Table 3: Forecast RMSEs for Euro-Area Inflation Based on Country Specific
HICPs Relative to Univariate AR Benchmark Model Selected by SC

forecast horizon
Model type Model 1-step 6-step 12-step
full AR/VAR SC-VAREMU,F 1.0088 0.9683 0.9400

SC-VAREMU,I 0.9885 1.0028 0.9982
SC-VAREMU,F,I,NE 1.0272 1.0473 1.0418
SC-VAREMU,F,I,NE,A 1.0428 1.0290 1.0161
SC-VAREMU,f1 1.0180 1.0332 1.0039
SC-VAREMU,f1,f2 1.0300 1.0615 1.0200

AIC-AREMU 0.9608 1.0764 1.0046
AIC-VAREMU,F 0.9314 1.0261 0.9911
AIC-VAREMU,I 0.9380 1.0624 0.9856
AIC-VAREMU,F,I,NE 0.9314 1.0702 0.9666
AIC-VAREMU,F,I,NE,A 0.9743 1.0030 0.9721
AIC-VAREMU,f1 0.9227 1.0619 1.0392
AIC-VAREMU,f1,f2 0.9376 1.0326 0.9996

subset AR/VAR AREMU 0.9228 1.0794 1.0032
VAREMU,F 0.9825 1.0480 0.9463
VAREMU,I 1.0466 1.0404 1.0080
VAREMU,F,I,NE 1.1116 1.0526 0.9833
VAREMU,F,I,NE,A 1.1405 1.1070 0.9893
VAREMU,f1 0.9683 1.1522 1.0781
VAREMU,f1,f2 0.9520 1.0762 1.0802

Notes: Total sample period: 1991M1-2008M12; forecast period: 2005M1-
2008M12; maximum lag order pmax = 14; EMU – European Monetary Union,
A – Austria, F – France, I – Italy, NE – Netherlands; f1 – first factor, f2 –
second factor.
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Table 4: Forecast RMSEs for Euro-Area Inflation Based on Sector Specific
HICPs Relative to Univariate AR Benchmark Model Selected by SC

forecast horizon
Model type Model 1-step 6-step 12-step
full AR/VAR SC-VARall,F 0.9865 0.9843 0.9641

SC-VARall,F,IG 1.0163 1.0070 0.9540
SC-VARall,F,IG,E 1.0222 1.0432 0.9722
SC-VARall,F,IG,E,S 1.0317 1.0425 0.9834
SC-VARall,f1 1.0090 0.9726 0.9505
SC-VARall,f1,f2 1.0079 0.9763 0.9594

AIC-ARall 0.9608 1.0764 1.0046
AIC-VARall,F 0.9505 1.0737 0.9924
AIC-VARall,F,IG 0.9560 1.1666 1.1089
AIC-VARall,F,IG,E 0.9368 1.0768 1.0768
AIC-VARall,F,IG,E,S 0.9716 1.1316 1.2106
AIC-VARall,f1 0.9450 1.0861 1.0319
AIC-VARall,f1,f2 0.9715 1.1051 1.0309

subset AR/VAR ARall 0.9228 1.0794 1.0032
VARall,F 1.2253 1.1581 1.0854
VARall,F,IG 1.0146 1.1623 1.0789
VARall,F,IG,E 1.0241 1.1721 1.0686
VARall,F,IG,E,S 1.1032 1.1488 1.0406
VARall,f1 1.1060 1.0674 0.9999
VARall,f1,f2 1.0562 1.0974 1.0653

Notes: Total sample period: 1991M1-2008M12; forecast period: 2005M1-
2008M12; maximum lag order pmax = 14; all – overall HICP, F – Food incl.
alcohol and tabacco, IG – Industrial goods excluding energy, E – Energy, S
– Services; f1 – first factor, f2 – second factor.
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Figure 1: Percentage deviations of forecast RMSEs based on VARs with
disaggregate components from RMSE of AR model for aggregate (DGP 1,
T = 100).
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Figure 2: Percentage deviations of forecast RMSEs based on VARs with
disaggregate components from RMSE of AR model for aggregate (DGP 1,
T = 250).
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Figure 3: Percentage deviations of forecast RMSEs based on VARs with
disaggregate components from RMSE of AR model for aggregate (DGP 2,
T = 100).
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Figure 4: Percentage deviations of forecast RMSEs based on VARs with
disaggregate components from RMSE of AR model for aggregate (DGP 3,
T = 100).
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Figure 5: Percentage deviations of 1-step forecast RMSEs based on VARs
with disaggregate components selected by AIC and SC from RMSE of AR
model for aggregate (T = 100).
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Figure 6: RMSEs of subset AR/VAR models for unemployment relative to
full SC-AR/VAR models.
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