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Abstract

In the context of a two-state, two-trader financial market herd model introduced by Avery
and Zemsky (1998) we investigate how informational ambiguity in conjunction with waves
of optimism and pessimism affect investor behavior, social learning and price dynamics.
Without ambiguity, neither herding nor contrarianism is possible. If there is ambiguity
and agents have invariant ambiguity preferences, only contrarianism is possible. If on
the other hand ambiguity is high and traders become overly exuberant (or desperate) as
the asset price surges (or plummets), we establish that investor herding may drive prices
away from fundamentals with economically relevant probability.
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1 Introduction

Throughout the past decade financial markets exhibited strong degrees of volatility and were

characterized by the formation and subsequent burst of bubbles. The prevalent view in the

economic literature is that herding among investors is an important driver for such undesirable

market phenomena.

The intuition behind this claim is appealing: Investors face a decision whether or not to

buy (or sell) a risky asset. As they observe other investors accumulating on one side of the

market, they choose to ignore their own noisy information regarding the asset’s true value

and follow the crowd instead. If the crowd is wrong, such herding on the crowd’s action drives

prices away from fundamentals contributing towards the formation of bubbles (or excessive

downturns). This argument, however, breaks down for most of the existing financial market

herd models, see e.g. the seminal works of Avery and Zemsky (1998) and Park and Sabourian

(2011). Their models assume that upon the arrival of new information, investors update their

beliefs according to Bayes’ Rule and that investor choices are based on subjective expected

utility theory, i.e. that ambiguity over probabilities does not matter for financial decision

makers. Together, these assumptions essentially prevent the existence of wrong crowds and,

thus, wrong herds, compare Eyster and Rabin (2010) and Brunnermeier (2001).1

In this paper, we want to study how individual investment decisions and the result-

ing crowd behavior are affected if financial choices are made under ambiguity (Knightian

uncertainty). We are particularly interested if ambiguity contributes towards potentially

price-distorting herding (contrarianism) and may, thus, support the intuition that investor

coordination and bubbles are linked.2

We apply the concept of ambiguity to the two-state, two-trader version of the rational market

microstructure herd model of Avery and Zemsky (1998). We assume that investors facing

1Bayesian updating and preferences in accord with subjective expected utility theory are in line with
Barberis and Thaler (2003)’s notion of investor rationality. They argue that the assumption of rationality
precludes financial market models from explaining “basic facts about the aggregate stock market, the cross-
section of average returns and individual trading behavior” (Barberis and Thaler (2003), p.3).

2A departure from belief updating according to Bayes’ Rule as proposed by e.g. Eyster and Rabin (2010)
would also explain the existence of wrong herds. Yet, as Daniel et al. (1998) explicate, any such behavioral
bias of investor behavior requires an in-depth experimental and empirical foundation, lest it will be subject
to criticism that it is arbitrary. Evidence supports biases such as overconfidence, see Weizsäcker (2010) and
Daniel et al. (1998), or probability weightings and loss aversion in line with prospect theory, see Tversky and
Kahneman (1992). Applied to herd models these biases cast additional doubt on the rationale that herding
may be the cause for market inefficiencies, compare Huber et al. (2015).
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ambiguity make decisions in line with non-extreme-outcome-additive (neo-additive) Choquet

preferences which were first introduced by Chateauneuf et al. (2007).

The principal model in this paper is related to the one proposed by Ford et al. (2013).3

Yet, we modify and extend their framework in many important ways. First and most impor-

tantly, in our framework investor preferences are part of the common knowledge structure of

the model. Second, in line with Brunnermeier (2001) and the bulk of the theoretical herd-

ing literature, we define herding (contrarianism) as a switch in an agent’s opinion toward

(against) that of the crowd that has to be induced by the crowd.4 Third, we consider a more

general setup as we depart from the General Bayesian Updating (GBU) rule for Choquet

preferences proposed by Eichberger et al. (2010). More precisely, we assume that the individ-

ual degree of optimism, i.e. investor’s ambiguity preference, may vary with the asset price.5

Finally, we study a whole class of perturbed versions of our model where the market exhibits

marginal uncertainty regarding the true investor preferences. Indeed, Ford et al. (2013)’s

assumption that the market is fully ignorant of the true investor preferences can be seen as

an extreme special case of the perturbed model setup.

The key insights developed in this paper can be grouped in two categories. First, we char-

acterize conditions under which herding and contrarianism are possible. Second, we discuss

how such investor behavior affects market outcomes.

With respect to the first category, we find that informed traders with neo-additive Cho-

quet preferences never herd but show strong contrarianistic tendencies, when beliefs are

updated according to the GBU rule.6 As we depart from GBU, we specify necessary and suf-

ficient conditions for investor herding. We find that herding becomes possible if high degrees

3Another paper that modifies the model of Avery and Zemsky (1998) to reflect investment choices under
ambiguity is the one of Dong et al. (2010). They use smooth ambiguity functions as introduced by Klibanoff
et al. (2005) to model ambiguity stemming from multiple priors regarding the distribution of the risky asset.
They find that herding is possible if the degree of ambiguity aversion differs between market maker and
informed traders. This is in line with Décamps and Lovo (2006), who obtain a similar result for different risk
preferences among traders and market maker.

4Indeed, Ford et al. (2013) do not require that herding and contrarian behavior are crowd-induced.
5To motivate this assumption, we appeal to a growing finance literature that assumes that risk aversion is

subject to change, see for instance Campbell and Cochrane (1999) or Bekaert et al. (2009). Indeed, standard
approaches to measure risk aversion via volatility premia, abundantly show that risk aversion depends on
market sentiment and recent price trajectories, see e.g. Jurado et al. (2015), Bekaert et al. (2013) and
Bollerslev et al. (2011). We posit that if risk aversion is assumed to move with prices, so should ambiguity
aversion.

6The impossibility of herding derived here contradicts the findings of Ford et al. (2013). This is due to
their different definition of herd behavior.
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of perceived ambiguity coincide with (potentially irrational) exuberance and despair among

informed traders.

Second, in terms of market outcomes, we find that in our two-state, two-trader setup

informational cascades occur as soon as investors herd or act as contrarians. Since prices stop

moving during an informational cascade we find that both, herding and contrarianism prevent

the market from learning the asset’s true value. In addition, they have an equal potential

to drive prices away from fundamentals. A comprehensive comparative static analysis of the

probability of such price distortions is provided.

Informational cascades due to herding and contrarianism, however, exhibit an important

qualitative difference, which is revealed by the analysis of the pertubed version of our model.

In the perturbed model we still assume that all informed traders have neo-additive Choquet

preferences. Yet, market participants think that informed traders have Choquet preferences

only with probability 1− ε and that they are expected utility maximizers with probability ε.

In this case, social learning continues even as investors engage in herd or contrarian behavior.

We find that ambiguity in conjunction with strong exuberance or desperation may cause

investors to confidently herd on the wrong state of the world with economically relevant prob-

ability in the perturbed model. Markets prone to contrarianism show similar outcomes as in

the non-perturbed model, i.e. no learning about the asset’s true value and limited long-term

price distortions.

The literature of decision making under ambiguity can be grouped in two main approaches

that are closely related. First, the multiple prior approach explicitly models a range of prob-

ability distributions of the states of the world an individual considers possible (her set of

priors) and from which she chooses according to some specified decision rule such as maxmin,

compare Gilboa and Schmeidler (1989). Second, the Choquet Expected Utiliy (CEU) ap-

proach models decision making under ambiguity through non-additive probability measures

or so-called capacities, compare Schmeidler (1989). If no objective probabilities are available

as e.g. in Ellsberg (1961)’s famous mind experiment, CEU agents assign individual likelihoods

to different outcomes.

For our application, we choose neo-additive capacities over multiple prior setups as well

as general Choquet preferences for three reasons. First, our analysis requires a parametric

separation of the degree of perceived ambiguity and the individual attitude towards am-

biguity. This makes neo-additive capacities the superior choice when compared to general
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capacities, compare Eichberger et al. (2005), Eichberger et al. (2007) and Chateauneuf et al.

(2007). Second, focusing on neo-additive capacities is particularly appealing in the Avery

and Zemsky (1998) framework, since it rids us of investor beliefs that are unintuitive. For

instance, neo-additive beliefs prevent investors from assigning higher likelihoods to the state

that is objectively less likely. Finally, in line with Chateauneuf et al. (2007), neo-additive

capacities allow us to relate individual degrees of optimism and pessimism to other compo-

nents of the Avery and Zemsky (1998) model such as the bid and ask price. We can, thus,

intuitively describe if and when irrational exuberance (despair) may lead to herding that

moves prices away from fundamentals.7

We should mention, however, that the theoretical finance literature investigating investor

behavior under ambiguity outside social learning settings gravitates towards the multiple

prior framework.

Examples of static investment and portfolio choices include the works of Bossaerts et al.

(2010), Gollier (2011) and Schröder (2011). They use multiple prior setups such as smooth

ambiguity functions as introduced by Klibanoff et al. (2005) (KMM approach) or α-maxmin

decision rules to model ambiguity and ambiguity preference.8 Intertemporal financial choices

under ambiguity are discussed in e.g. Klibanoff et al. (2009). They generalize the KMM

framework to an intertemporal setting, deriving a recursive representation for ambiguity pref-

erences. Ju and Miao (2012) employ the generalized KKM framework to model intertemporal

asset pricing and investment choices under ambiguity.

There is, however a very strong unifying assumption underlying the KMM, α-maxmin

and neo-additive Choquet frameworks. That is, the decision makers’ ambiguity attitude is

not necessarily limited to aversion but may also reflect lovingness for ambiguous gambles.9

Indeed, robustness checks reveal that the results in this paper can be replicated when em-

ploying a multiple prior setup with smooth ambiguity preferences or α-maxmin decision rules.

7To the best of our knowledge, the concepts of optimism and pessimism have not yet been associated with
the mentioned multiple prior frameworks.

8The α-maxmin framework is introduced by Ghirardato et al. (2004) and can be seen as the multiple prior
counterpart of neo-additive Choquet preferences.

9Recent applications of the multiple prior framework include variational and multiplier preferences and are
particularly designed to apply ambiguity aversion to intertemporal optimization problems, compare Ghirardato
et al. (2004) and Hansen and Sargent (2001) respectively. Since they exclude ambiguity lovingness by definition,
they are not suited for our application.
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Ambiguity in our framework can be seen as an agent’s lack of confidence in the validity

of her information (informational ambiguity). Hence, it is natural to choose a market model,

where herding (and contrarianism) is triggered by information externalities that an invest-

ment decision by one agent imposes on subsequent agents’ expectations about the asset value,

compare the seminal work of Bikhchandani et al. (1992).10

We choose the two-state, two-trader version of Avery and Zemsky (1998) as the baseline

model over more recent and complex market microstructure herd models such as Park and

Sabourian (2011) or Cipriani and Guarino (2014) since we want to avoid unnecessary dis-

tractions due to complex model features.11 Indeed, in the baseline model without ambiguity

neither herding nor contrarianism are possible, compare Avery and Zemsky (1998). This

constitutes a sharp and, hence, illustrative contrast to investor behavior under ambiguity.

Having said that, we will also argue that the insights from this paper are conveniently trans-

ferred to more complex setups.

The remainder of this paper is organized as follows: In Section 2, we revisit the model of

Avery and Zemsky (1998) and discuss investor behavior if there is no ambiguity. In Section

3, we apply ambiguity to the model of Avery and Zemsky. We derive the necessary and suf-

ficient conditions for herding and contrarianism under ambiguity and discuss corresponding

market outcomes in Section 4. In Section 5, we introduce the perturbed model and highlight

differences of price-dynamics under herding and contrarianism. Section 6 is devoted to the

discussion of the robustness of our findings, while Section 7 concludes. Technical proofs as

well as additional material and deep dive analyses are found in the Appendix.

10Alternative drivers for herd behavior include reputational concerns as well as investigative herding. Rep-
utational herd models modify the agents’ objective functions such that their decisions are affected by positive
externalities from a good reputation, see e.g. Scharfstein and Stein (1990), Graham (1999) and Dasgupta et al.
(2011). Investigative herd models examine conditions under which investors may choose to base their decisions
on the same information resulting in correlated trading behavior, see e.g. Froot et al. (1992) and Hirshleifer
et al. (1994).

11Other financial market herd models such as Lee (1998), Chari and Kehoe (2004), and Cipriani and Guarino
(2008), investigate how investor herding is related to transaction costs, endogenous timing of trading decisions,
and informational spillovers between different assets, respectively.
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2 The Baseline Herd Model Without Ambiguity

This section reviews the two-state, two-trader version of the model of Avery and Zemsky

(1998) and presents it’s key property: Without ambiguity no herding and no contrarianism

are possible.

2.1 The model setup

Avery and Zemsky (1998) consider a sequential trading model in the spirit of Glosten and

Milgrom (1985), consisting of a single asset, informed as well as noise traders and a market

maker. The model assumes rational expectations and common knowledge of it’s structure.

Moreover, all decisions in the model are decisions under risk, i.e. there is no ambiguity. We

refer to the model specified in this section as the baseline model.

The Asset: There is a single risky asset with unknown fundamental value V ∈ {V0, V1},
where V0 < V1. We refer to V1 as the high state and V0 as the low state. Without loss of

generality, let V0 = 0 and V1 = 1. The prior is fully characterized by the prior probability

for the high state π0 := P (V = V1) and assumed to be non-degenerate, i.e. 0 < π0 < 1.

The asset is traded over T consecutive points in time. After T , the true state of the world is

revealed and traders receive their payment accordingly.

The Market Maker: Trading takes place in interaction with a market maker who quotes

a bid and an ask price at every time t = 1, ..., T . The market maker only has access to public

information, consisting of the history of trades Ht and the risky asset’s prior distribution π0.

The trade history is defined as Ht := {(a1, p1), ..., (at−1, pt−1)}, where ai ∈ {buy, sell, hold}
is the action of a trader in period i ≥ 1 and pi is the price at which that action is executed.

The relevant public information is fully reflected by the public belief regarding the asset’s

true value, which is given by E[V | Ht] = P (V = 1|Ht) =: πt.
12 In line with Avery and

Zemsky (1998), we also refer to πt as the asset’s price in period t. The market maker is

subject to Bertrand competition and, thus, quotes bid and ask prices according to a zero-profit

condition. Formally, we have askt = E[V |Ht ∪ {at = buy}] and bidt = E[V |Ht ∪ {at = sell}].

12πt uniquely identifies the history of trades up to the number of holds. In particular, it can be bijectively
mapped to any order imbalance in the trade history. We will, hence, also refer to πt as the market’s sentiment
or degree of optimism. This argument is discussed formally in Section 8.E the Appendix of this paper, see
Proposition 8.12.
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The Traders: Traders arrive at the market one at a time in a random exogenous order

and decide to buy, sell, or not to trade one unit of the asset at the quoted bid and ask

prices. Traders are either risk neutral informed traders or noise traders. The fraction of

informed traders is denoted by µ. Informed traders base their decision to buy, sell, or not to

trade on their expectations regarding the asset’s true value. In addition to publicly available

information, informed traders form their beliefs based on a private signal S ∈ {S0, S1}. We

refer to S0 as the low signal and S1 as the high signal.13 Informed traders buy (sell) one unit of

the asset if their expected value of the asset E[V | S,Ht] = P (V = 1|S,Ht) is strictly greater

(smaller) than the ask (bid) price quoted by the market maker.14 Otherwise, they choose not

to trade. In contrast to informed traders, noise traders choose their action randomly, that

is, they decide to buy, sell, or not to trade with equal probability of 1/3. Consequently, the

probability that a noise trader arrives at the market and either buys, sells or holds the asset

is equal to (1− µ)/3. For notational convenience, we define (1− µ)/3 =: θ.

The Private Signal: The distribution of the private signals S0, S1 is conditional only on

the true state of the world and is denoted by P (S|V ). In particular, it does not depend

on the trading history Ht. Without loss of generality, we assume symmetric binary signals

(SBS) with precision 1 > q > 0.5, i.e. P (Si|Vi) = q for i = 1, 2. Assuming q > 0.5 ensures,

that signals are informative in the sense, that they point an informed trader towards the true

state of the world. If the low state realizes, then it is more likely to receive a low signal than

receiving a high signal (and vice versa if the high state realizes). The larger q, the less noisy

and more informative the signal gets.

Updating: Belief updating follows Bayes’ rule. Public beliefs are updated from πt to πt+1

when a trading decision at is observed in t + 1. Similarly, the public belief πt is updated to

a private belief E[V |S,Ht] if a trader arriving at the market at time t has received a private

information signal S.15

The updating rules imply that for any fixed model parameterization the market maker’s

13Throughout this paper, by an abuse of notation, we also label the informed trader who receives signal S,
by S.

14We can think of traders being endowed with one unit of money. In that sense, selling the asset really
means to short-sell it. The investors’ endowment is risk and ambiguity free.

15For the readers convenience, we have stated the formulas for the informed traders’ and the market’s beliefs
as well as bid and ask prices with respect to model parameters in Lemma 8.11 in Section 8.E in the Appendix
of this paper.
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bid and ask quotes as well as the informed traders’ asset valuations in t only depend on the

price πt. We can, thus, view askt and bidt as well as E[V |S,Ht] as functions of πt. As a

notational convention we write E[V |·, Ht] = E[V | ·, πt] = Eπt [V | ·] and askt = ask(πt) and

bidt = bid(πt). We will sometimes omit the time index for convenience.

Herding and Contrarianism: In line with Avery and Zemsky (1998), we define herd-

ing (contrarianism) as a “history-induced switch of opinion of a certain informed trader in

(against) the direction of the crowd”, compare Brunnermeier (2001). For instance, if an in-

formed trader S sells the asset initially based on her asset valuation E[V | S] but decides to

buy the asset at t ≥ 1 after she has observed a price increase (decrease), she is said to engage

in buy herding (contrarianism).16

Informational Cascade: Following Avery and Zemsky (1998) we say that an informa-

tional cascade occurs at time t if and only if P (at|V,Ht) = P (at|Ht), ∀at. This characterizes

a situation where the public cannot or does not infer any information from the observation of

a trade, i.e. if P (V |Ht+1) = P (V |Ht). To see this, note that during an informational cascade

Bayes’ Rule implies

P (V |Ht+1) = P (V |Ht, at) =
P (at|V,Ht)P (V |Ht)

P (at|Ht)
= P (V |Ht),

where the last equality holds due to the informational cascade definition.

Sometimes an informational cascade is also defined as a situation when all informed

traders take the same action irrespective of their information signal, compare e.g. Cipriani

and Guarino (2008).17 We note, that as long as the whole model structure is common knowl-

edge, this alternative definition is equivalent to the one we use here. We will, however, also

consider a perturbed version of our model, where the market is uncertain regarding the true

investor preferences. In this case it is conceivable that all traders take the same action, yet,

the market still infers information from observed trades. Hence, the more general definition

of Avery and Zemsky (1998) prevents us from wrongly identifying a situation as an informa-

16The definition for sell herding and contrarianism is symmetric if S buys initially. For formal definitions,
see Avery and Zemsky (1998) or Park and Sabourian (2011).

17The intuition behind this is appealing. If all informed traders take the same action independent of their
signal, the market cannot infer any information from their actions any more. Consequently, social learning
and price updating stop.
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Figure 1: Trading decisions of informed traders in Avery and Zemsky (1998).

Notes: Informed trader expectations E[V | S, πt], bid price bidt and ask price askt are depicted with respect

to the public prior belief at time t, πt. The informed trader share µ = 0.3 and the signal precision q = 0.6.

tional cascade, while social learning still continues.18

Having revisited the two-state, two-trader version of the Avery and Zemsky (1998) model,

we now state the key result regarding investor behavior.

2.2 Investor Behavior in the Baseline Model

Informed traders in the Avery and Zemsky (1998) model never change their initial trade

decision. Low signals always sell the asset while high signals always buy the asset. This fact

is summarized in the following

Proposition 2.1. Avery And Zemsky

Informed traders in the two-state, two-trader model of Avery and Zemsky always follow their

private signals, i.e. ∀t and histories Ht:

0 < E[V | S0, Ht] < bidt < πt < askt < E[V | S1, Ht] < 1.

18A formal discussion of the different definitions of informational cascades is provided in Proposition 8.15
in the Appendix.
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Proof: Avery and Zemsky (1998).

An immediate consequence is that neither herding nor contrarianism is possible. Both types

of investor behavior require that traders change their initial trade decision, which never hap-

pens due to Proposition 2.1. This is illustrated in Figure 1. For any price πt ∈ (0; 1) (and

thus any conceivable history Ht) the expectation of the high signal remains above the ask

price while the expectation of the low signal remains below the bid price. Analyses in Avery

and Zemsky (1998) and Chamley (2004) show that the market confidently learns about the

true value of V in this case. The higher the signal precision q and the informed trader share

µ, the faster the market learns.

These clearcut results are an important reason for choosing the two-state, two-trader version

of Avery and Zemsky (1998) as our baseline model. It allows us to highlight that introducing

informational ambiguity to the model in the next section, indeed, has game changing effects

on investor behavior and social learning.
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3 Introducing Ambiguity to the Baseline Herd Model

In this section we apply the concept of ambiguity to the model framework of Avery and

Zemsky (1998). We show how the assumption that informed traders have non-extreme-

outcome-additive (neo-additive) Choquet Preferences affects their asset valuation based on

the insights provided by Chateauneuf et al. (2007).19 We particularly focus our discussion

on the role of the perceived ambiguity δ as well as the informed traders’ attitude towards

ambiguity α. In line with Eichberger et al. (2010), we provide updating rules for the neo-

additive Choquet Expected Utility (CEU) beliefs. Finally, formal definitions for herding and

contrarianism for investors with CEU preferences are provided. For the remainder of this

paper, we refer to this model as the CEU model.

3.1 Investors with NEO-Additive Preferences

As we introduce ambiguity to the model of Avery and Zemsky, we make three general as-

sumptions. First, in order to isolate the effects of ambiguity on investor decisions and social

learning, we assume that informed traders as well as the market maker remain risk neutral.

Second, the market maker does not perceive ambiguity. We may think of the market maker

as an invisible hand that enforces a normatively acceptable price mechanism. Bid and ask

prices as well as the public belief πt should, therefore, be inherently unambiguous. Third,

we consider investor preferences to be part of the common knowledge structure of the model.20

To incorporate ambiguity, we assume that informed traders have neo-additive CEU prefer-

ences. An individual with this type of preference assigns additive probabilities to every event

that does not include the best and the worst outcome. For extreme outcomes neo-additive

agents assign a weighted average of additive probabilities and non-additive likelihoods. Since

in the two-state world of Avery and Zemsky every outcome is extreme, the resulting neo-

additive CEU valuation is particularly simple to derive. In line with Chateauneuf et al.

(2007), we infer that an informed trader with neo-additive CEU preferences and signal S

19A similar exercise has been conducted by Ford et al. (2013). A toolbox of the mathematical objects and
results related to the neo-additive ambiguity concept is provided Section 8.G in the Appendix.

20This is a key distinguishing feature from the model of Ford et al. (2013). In Section 5 we relax the common
knowledge assumption to study differences of stylized price dynamics in markets prone to herding and markets
prone to contrarianism.
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values the asset at

CEU [V | S,Ht] = (1− δS)E[V | S,Ht] + δSα, (1)

where α, δS ∈ [0; 1].21

CEU [V | S,Ht] is essentially a weighted average of the subjective expected utility (SEU)

valuation E[V | S,Ht] and a subjectively assigned likelihood α that V = 1 is the true state

of nature. In line with Chateauneuf et al. (2007), we regard α as the individual degree of

optimism. Indeed, the higher α, the more likely the investor considers the high state to be

true, the more optimistic, excited or exuberant she gets regarding the investment prospect

and it’s pay-off (and vice versa).22 The weighting parameter δS is the degree of perceived

ambiguity and can be viewed as the investor’s lack of confidence in her ability to form a SEU

belief.The higher δS the more the investor relies on her gut feeling α as to whether the low

or the high state is true.23

Throughout this paper we assume that the asset valuations of the different informed

trader types are monotone in the sense that CEU [V | S0, Ht] ≤ CEU [V | S1, Ht]. From

an economical perspective this can be seen as the ambiguity version of a weak form of the

Monotone Likelihood Ratio Property (MLRP) of private signals. Indeed, Park and Sabourian

(2011) show that MLRP signal structures imply that the order of the informed traders’

asset valuations is the same for all histories Ht. Our monotonicity assumption constitutes

a corresponding property under ambiguity. Park and Sabourian (2011) label MLRP and

associated trade behavior as “well-behaved”. We presume that this “well-behavedness” is

preserved under ambiguity.24

For the remainder of this paper, whenever we speak of CEU , we actually mean CEU

with respect to neo-additive capacities unless explicitly stated otherwise.

21The same result has been obtained by Ford et al. (2013). In Section 8.G in the Appendix we provide a
more detailed and formal derivation of Equation (1).

22From a decision theoretic perspective, α is primarily a preference parameter describing the investor’s
attitude towards ambiguity. In line with Ghirardato and Marinacci (2002), the investor is absolutely ambiguity
loving (averse) if and only if α > E[V | S,Ht] (α < E[V | S,Ht]. She is absolutely ambiguity neutral if and
only if α = E[V | S,Ht]. Technical details on this are provided in Proposition 8.19 in Section 8.G of the
Appendix of this paper.

23For an intuitive example of an investor facing ambiguity, see Section 8.A in the Appendix.
24We stress that the results of this paper do not hinge on this assumption. Yet, stating the results and

discussing them is facilitated.
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3.2 Updating CEU Beliefs

3.2.1 General Bayesian Updating (GBU)

The GBU rule of Eichberger et al. (2010) implies that upon the arrival of new informa-

tion, i.e. the observation of a trade, the additive part of neo-additive beliefs in Equation

(1), E[V | S,Ht], is updated according to Bayes’ rule as usual. In addition, the degree of

ambiguity δS is also updated, while the degree of individual optimism α remains fixed.

The updating rule for δS is given by

δS =
δ0

(1− δ0)P (S|Ht) + δ0
. (2)

We note again that the dynamics of δS solely depend on πt and that we can, hence, view δS

as function of πt.
25

The parameter δ0 can be interpreted as a degree of primary ambiguity that investors

perceive when deciding to trade the risky asset. It may stem from the complexity of the asset

or from the fact that erratic asset price movements elude established forecasting methods.

For instance, derivatives like options, swaps or Collateralized Debt Obligations (CDOs) might

trigger a higher primary ambiguity than actual stocks, because they are more difficult to un-

derstand and their future values are more difficult to predict accurately. By the same line

of reasoning the degree of primary ambiguity should depend on the expertise of the investor.

A retail trader perceives much higher degrees of primary ambiguity than a professional in-

vestment banker. We assume that δ0 > 0 is constant across informed traders and during the

trading period under consideration [0;T ].

Figure 2 illustrates that there are two additional sources of ambiguity that contribute to-

wards the degree of total perceived ambiguity δS . It depicts δS with respect to the price πt

for informed traders receiving a low signal S0 as induced by GBU.

In addition to the fixed level of δ0, total perceived ambiguity also includes ambiguity

stemming from the fact that the private information signal S0 may contradict the public

information reflected in the price πt and the noisiness of the private signal. For instance, a

high price πt indicates strong market confidence that the high state is the true state. The

25To see this, note that P (S|Ht) = πtP (S|V1) + (1 − πt)P (S|V0) by the law of total probability and that
P (S|Vi) are time-invariant parameters.
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Figure 2: Sources of ambiguity for a low signal

Notes: The graph shows the degree of ambiguity δS0 with respect to prior πt for S0. The primary ambiguity

level is δ0 = 0.4, the informed trader share is µ = 0.3, the signal precision is q = 0.7. δS0 is computed according

to Equation (2).

low signal S0, however, suggests that the low state is more likely to be true than the high

state, thus contradicting the public information reflected in πt. Indeed, the greater πt the

more the low signal contradicts the public information and the higher the low signal’s total

degree of perceived ambiguity δS0 . Yet, even if public and private information are aligned, i.e.

if πt → 0, the noise in S0 prevents the informed trader from fully discounting the possibility

that the high state is true. As a consequence, the δS0 remains strictly above the degree of

primary ambiguity δ0 for all prices πt.
26

Eichberger et al. (2010) argue that α is an individual ambiguity preference parameter which

should not be affected by the arrival of new information. Yet, since we want to study whether

potentially irrational exuberance and outright panics drive investor herding, allowing α to

vary might prove insightful. Moreover, the following section shows that the economic litera-

ture has readily documented that the conceptually related risk preference in fact is subject

to change.

26If a trader receives a perfect signal (no noise) there is no informational ambiguity on top of primary
ambiguity. In that case, we have P (S|Ht) ≡ 1 which implies that δS ≡ δ0 for all πt.
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3.2.2 Departing from GBU - Varying Degrees of Optimism

It is fairly common in the finance literature to assume that the degree of risk aversion depends

on the market sentiment, see e.g. Campbell and Cochrane (1999). This is supported by a

large body of empirical evidence showing that during crisis periods risk aversion increases,

while it tends to vanish during boom phases, see e.g. Jurado et al. (2015), Bekaert et al.

(2013) and Bollerslev et al. (2011). Given the conceptual similarities of risk and ambiguity

aversion, we argue that the individual degree of optimism α (ambiguity aversion) should also

depend on the general market sentiment.

In our model framework market sentiment is best captured by the price πt. The higher

πt the stronger the degree of optimism exhibited by the market as a whole that V is a lucrative

investment opportunity. Since it is reasonable to assume that market-wide optimism affects

individual optimism, allowing α to vary with πt is a feasible generalization of GBU.

Formally, we set α = αS(πt | q, π0, ·), i.e. it varies with the price but may also depend

on the signal precision, the information signal S or exogenous events. A low signal S0, for

example, may dampen optimism or boost panic. Likewise, strong and accurate information

signals, i.e. a high q, might prevent investors from overreacting to changes in market senti-

ment, while low q could make the CEU trader particularly susceptible for such mood swings.

Finally, we observe that the informed trader share µ plays no explicit role when informed

traders form additive beliefs in the baseline model without ambiguity.27 Consequently, we

would argue that µ should not directly affect CEU beliefs neither. To ensure this, α must be

independent of µ.

We make three additional assumptions regarding α(πt | ·) for convenience. These assump-

tions are not crucial for the results derived in this paper, yet, they allow us to state them in

a lean and intuitive way.28

(A1) For π0 both informed trader types act as if they were ambiguity neutral, i.e. αS(π0) =

E[V | S].

(A1) implies that S0 and S1 type informed traders have different ambiguity functions.

27For example, note that E[V | S0, Ht] = (1−q)πt

(1−q)πt+q(1−πt)
.

28Section 6 highlights the effects of generalizing (A3) to obtain a framework where investor preferences
follow a random distribution. Section 8.B in the Appendix discusses technical effects of dropping (A1) to (A3)
on the stated Lemmas and Theorems.
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While such an assumption may seem ad hoc, we stress that it is made without loss of gen-

erality and only to focus our discussion on the case where the low (high) signal sells (buys)

initially. (A1) prevents us from being distracted from less interesting scenarios. For example,

it precludes the possibility that the two informed trader types take the same action in t = 0,

which would cause an informational cascade right at the beginning of trading. Moreover,

conditions for herding and contrarianism derived under (A1), i.e. conditions under which

traders switch their initial trade decision from selling to buying and vice versa, also hold for

weaker forms of switching behavior, i.e. from holding into buying and selling.

(A2) α(·) is sufficiently regular in πt and the change in α is marginal as the market be-

comes confident about either state, i.e. ∂α
∂π (1) = ∂α

∂π (0) = 0.

(A3) The individual degree of optimism is identical for all low signal traders and all high

signal traders respectively.

The updating of δS as well as the additive belief component of CEU remains as under GBU.

Since δS and αS as well as the additive component E[V | S,Ht] can be viewed as functions

of πt, we may also consider CEU as a function of the price. In line with Section 2, we write

CEU [V | S,Ht] = CEUS(π) for notational convenience.

Now that we have formalized how traders with neo-additive preferences facing ambiguity

value the risky asset, we can provide appropriately adjusted definitions for herd and contrarian

behavior.

3.3 Herding and Contrarianism in the CEU Model

We modify Avery and Zemsky (1998)’s definition of herding and contrarianism to account

for the fact that investor perceive ambiguity and have neo-additive preferences.

Definition 3.1. Herding With NEO-Additive preferences

An informed trader with neo-additive CEU preferences and signal S buy herds in t̂ at history

Ht̂ if the following three conditions hold:

(*BH1) CEU [V | S] < bid0, i.e. an informed trader with signal S and neo-additive CEU

preferences sells at t = 0,

16



(*BH2) CEU [V | S,Ht̂] > askt̂, i.e. an informed trader with signal S and neo-additive CEU

preferences buys in t = t̂.

(*BH3) πt̂ > π0, i.e. the asset price has increased during [0; t̂].

Analogously, an informed trader sell herds in period t̂ at history Ht̂ if and only if (*SH1)

CEU [V | S] ≥ bid0, (*SH2) CEU [V | S,Ht̂] < bidt̂, and (*SH3) πt̂ < π0 hold simultaneously.

These modifications ensure that in line with Brunnermeier (2001) and the bulk of the

theoretical herding literature, an informed trader’s switch in opinion is still induced by the

observed trade history. More precisely, herding would by definition be impossible if the

trade decisions of other investors were not observable, compare opaque market in Park and

Sabourian (2011).29

The corresponding definition for contrarian behavior is

Definition 3.2. Contrarianism With NEO-Additive preferences

An informed trader with with neo-additive preferences and signal S acts as a buy contrarian

in t̂ at history Ht̂ if the following three conditions hold:

(*BC1) CEU [V | S] < bid0, i.e. an informed trader with signal S and neo-additive CEU

preferences sells in t = 0.

(*BC2) CEU [V | S,Ht̂] > askt̂, i.e. an informed trader with signal S and neo-additive CEU

preferences buys in t = t̂.

(*BC3) πt̂ < π0, i.e. the asset price has decreased during [0; t̂].

Analogously, an informed trader acts as a sell contrarian in period t̂ at history Ht̂ if and

only if (*SC1) CEUSδ0,α[V ] > ask0, (*SC2) CEUSδ0,α[V |Ht̂] < bidt̂, and (*SC3) πt̂ > π0 hold

simultaneously.

With these definitions at hand, we are now prepared to investigate investor behavior in

the model of Avery and Zemsky under ambiguity.

29This is not the case in Ford et al. (2013). They consider any buy (sell) decision of a low (high) CEU signal
to be a corresponding herding trade as long as the price has increased (decreased).
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4 Investor Behavior and Social Learning under Ambiguity

In this section we present the main results. We will first solve the CEU model by pro-

viding equilibrium prices and updating rules. We then investigate investor behavior in the

CEU model under GBU and varying α, respectively. As we derive necessary and sufficient

conditions for herding and contrarianism, we note that both types of investor behavior will

inevitably lead to informational cascades. As we study the characteristics of the correspond-

ing market outcomes, we find that herders and contrarians are equally likely to cause prices

to move away from fundamentals. This probability is derived analytically and comparative

statics are conducted.

4.1 Solving the CEU Model

We conjecture that unlike in the baseline model without ambiguity in Section 2, informed

traders with neo-additive CEU preferences may change their initial trade decision after having

observed certain histories of trades. If S0 and S1 take the same action at any time t, an

informational cascade occurs. Social learning stops and the market maker quotes ask and

bid prices equal to πt.
30 Even if there is no informational cascade, any decision change of an

informed trader affects the market maker’s price setting as well as the public belief updating.

We shall begin by formalizing the market maker’s price setting.

Lemma 4.1. Equilibrium Prices in the CEU Model

Under the assumptions of the CEU model, let bidt and askt be the bid and ask prices that are

quoted in the Avery and Zemsky model at any time t. If there is no informational cascade in

t, then the market maker quotes

bidCEUt = min{max{bidt;CEU [V | S0, Ht]};πt}

and

askCEUt = max{min{askt;CEU [V | S1, Ht]};πt}.

If there is an informational cascade in t, then the market maker quotes bidCKt = askCKt = πt

Proof: We have already established pricing given that S0 and S1 take the same action at t,

i.e. if there is an informational cascade. As long as S0 sells and S1 buys, prices are as in the

30Compare Avery and Zemsky (1998) and Cipriani and Guarino (2008) for detailed discussions of informa-
tional cascades as well as Proposition 8.15 in Section 8.F in the Appendix of this paper.
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Avery and Zemsky model. Indeed, since CEU [V | S0, Ht] < bidt < πt in this case, we have

that bidCEUt = bidt. The same argument applies for askCEUt = askt.

Moreover, monotonicity of the CEU-beliefs implies, that S1 never sells if S0 does not sell,

and that S0 never buys if S1 does not buy. This leaves only two additional cases to consider.

First, the case where S0 holds and S1 buys and second, the case where S1 holds and S0 sells.

For symmetry reasons, we will only prove the first case.

Let askt and bidt denote the ask and bid prices the market maker quotes in the Avery

and Zemsky model. Assume that at some time t, the high signal still buys and we have

bidt ≤ CEU [V | S0, Ht] ≤ πt < askt. This implies that the low signal with CEU preferences

holds in t.

Since the market maker (and his fictive Bertrand competition) are aware of this, the zero-

profit condition implies an increase of the quoted bid price to bidCEUt = CEU [V | S0, Ht]. If

the market maker set bidCEUt < CEU [V | S0, Ht], then he would make an average gain on

every sell of πt − bidCEUt . The market maker’s competition’s best response is to quote a bid

price b̃id
CEU

t > bidCEUt such that b̃id
CEU

t < CEU [V | S0, Ht] and πt − b̃id
CEU

t > 0. In other

words, the competition can quote a better bid price, thereby drawing away all noise traders

that sell the asset, while still making profits. In turn, the optimal response of the market

maker then is to increase bidCEUt correspondingly. This price war continues until bidCEUt =

b̃id
CEU

t = CEU [V | S0, Ht]. If the market maker quoted bidCEUt > CEU [V | S0, Ht], then

the low signal would sell at t. Consequently, the market maker would make an average loss of

bidt − bidCEUt for each sell he fills and would, therefore, eventually go out of business. Since

the competition is in the same situation, no market maker has an incentive to deviate from

the equilibrium bid price of CEU [V | S0, Ht].

If πt < CEU [V | S0, Ht]t ≤ askt, then the market maker quotes an equilibrium bid price

of bidCEUt = πt. A downward deviation is not possible due to Bertrand competition by the

same reasoning as above. An upward deviation would cause the market maker to make av-

erage losses of at least πt − bidCEUt for each sell he fills and, therefore, would again lead to

bankruptcy.

There are two important implications of Lemma 4.1.

First, as soon as an informed trader switches into holding, the market maker can make
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profits. As long S1 holds and CEUS1(π) remains above the market price π (S0 holds and

CEUS0(π) remains below π), the market maker on average profits from every buy (sell) he

fills. This is in line with the intuition that if traders depart from rationality in the sense

of Barberis and Thaler (2003), there will be opportunities for other market participants to

make money additional money. In all other cases the zero-profit condition holds.

Second, note that the quoted ask (bid) price in the CEU model remains the same as in

the Avery and Zemsky model as long as the high signal S1 buys and the low signal S0 does

not buy (the low signal S0 sells and the high signal S1 does not sell). This is crucial for the

derivation of the result on the possibility of herding and contrarianism and it ensures that

the corresponding results transfer to the perturbed model setup of Section 5.

Next, we derive the updating rules for the public belief πt in the CEU model.

Lemma 4.2. Public Belief Updating in the CEU Model

Under the assumptions of the CEU model, let bidt and askt be the bid and ask prices that are

quoted in the Avery and Zemsky model at any time t.

(1) If the high signal buys and the low signal sells at time t, then πt+1 is as in the Avery and

Zemsky model.

(2) If both signals take the same action in t, then there is an informational cascade and

πt+1 = πt.

(3) If the high signal buys and the low signal holds at time t, then

πt+1 =


askt, if at = {buy}

πt, if at = {sell}

bidt, if at = {hold}.

(3)

(4) If the high signal holds and the low signal sells at time t, then

πt+1 =


πt, if at = {buy}

bidt, if at = {sell}

askt, if at = {hold}.

(4)
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Proof: Case (2) is directly implied by the definition of an informational cascade. To see, that

cases (1), (3) and (4) hold, note, that informed traders still reveal their fundamentally driven

signal through their action. Since in case (1), informed traders decide as in the Avery and

Zemsky model price updating also coincides. In case (3) - where S1 buys and S0 holds - a sell

would contain no informational value, because it is a noise trade for sure. Consequently, the

price remains constant. If a buy is observed, the market maker knows, that it is conducted

by either the high signal or a noise trader. Consequently, updating after a buy is exactly the

same as in the Avery and Zemsky model. Finally, if a hold is observed, the market maker

knows, that it is due to the low signal or a noise trader. This is equivalent to the situation

of an observed sell in the Avery and Zemsky model. Consequently, the market maker sets

πt+1 = bidt, when observing a hold. The argument is symmetric for case (4), i.e. if S1 holds

and S0 sells.

Lemma 4.2 implies that the probability to observe a price increase (decrease), i.e. πt+1 > πt

(πt+1 < πt) remains constant as long as there is no informational cascade.31 This is crucial

for deriving a closed formula for the probability of price-distorting market outcomes below.

Having solved the model dynamics, we turn to the analysis of investor behavior in the CEU

model. We will first focus on the case where informed traders update their CEU belief in

accordance with the GBU rule. We will then consider the general case, where α may vary

with the price πt.

4.2 Investor Behavior in the CEU Model under GBU

This section shows that if informed traders perceive ambiguity and update their neo-additive

CEU preferences according to the GBU rule, i.e. they exhibit invariant ambiguity preference

α, then there is no herding in the CEU model. At the same time, informed traders show

strong contrarian tendencies that prevent the market from becoming confident about either

state.

Theorem 4.3.

31In particular, note that the probability of a price increase (decrease) is the same as in the baseline model,
where it coincides with the probability of buy (sell), see Lemma 8.11 in Section 8.E in the Appendix of this
paper for the respective formulas.
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In the CEU with α ∈ [0; 1] fixed, no herding can occur. If, in addition, S0 sells initially and

S1 buys initially, then contrarianism occurs with positive probability.

Proof: Since this proof is fairly technical, it is left to the Appendix.

We require, that S0 (S1) sells (buys) initially to avoid situations in which both informed

trader types take the same action initially, thereby causing an informational cascade right at

the beginning of trading.32 Note, that Theorem 4.3 contradicts some of the key results in Ford

et al. (2013). This is because we apply different definitions for herding and contrarianism.

Although the mathematical proof is left to the Appendix, we would like to provide some

intuition for our result.

The impossibility of herd behavior stems from the fact that neo-additive CEU traders’

beliefs are anchored around α. As a result, their belief updating process exhibits a strong

degree of sluggishness. CEU traders show particular reluctance in following the crowd. Con-

sider for instance a low signal type trader. Since she sells initially by assumption, she can

only engage in buy herding. When she observes a price increase, the additive part of the

CEU belief, Eπt [V |S0], increases in line with Bayes’ rule as in Avery and Zemsky (1998).

Since, however, she perceives ambiguity regarding the validity of her Bayesian asset val-

uation she tends to rely on her gut feeling to some extent, i.e. her individual degree of

optimism. Under GBU, α is, however, unaffected by the price increase. As a consequence,

the upward revision of CEU [V | S0, H] turns out be smaller than the corresponding belief

revision of her SEU counterpart from the model of Avery and Zemsky. Consequently, since

Eπ[V |S0] < bid(π) ≤ bidCEU (π) for all π, S0 keeps selling a fortiori after having observed a

price increase given that she sells to begin with.33 This precludes her from ever engaging in

buy herding behavior. The argument is symmetric for the high signal.

The mechanism preventing herding is, at the same time, the key driver for contrarian-

ism. The sluggish belief updating makes neo-additive CEU traders prone to act against the

crowd. As the asset price approaches one of the possible true states, i.e. if πt → 1 (or πt → 0),

both informed trader types will eventually start selling (or buying) the asset, regardless of

their initial trading decision. This is due to the fact, that their non-additive belief component

32We can enforce this condition by setting αS = E[V | S]. The effects of dropping this assumption are
discussed as we prove Theorem 4.3 in the Appendix.

33To see that Eπ[V |S0] < bid(π) ≤ bidCEU (π) holds, review Proposition 2.1 and Lemma 4.1.
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bounds away their asset valuation from 1 and 0, as the public becomes increasingly confident

about either state. Assume for instance a price decrease. As πt → 0, the quoted bid and ask

prices also approach zero. At the same time, the non-additive part of the informed traders

CEU beliefs δSαS is bounded away from 0.34 Given their initial trading decisions the low

signal can only engage in buy contrarianism while the high signal can only engage in sell

contrarianism.

4.3 Investor Behavior in the CEU Model with Varying α

We now investigate investor behavior under the assumption that the individual degree of

optimism α varies with the price πt.

4.3.1 Irrational Exuberance and Herd Behavior

In this section we derive necessary and sufficient conditions for herd behavior in the CEU

model with varying α. We begin our analysis by deriving a necessary condition.

Neccessary Condition: The essential finding is that the degree of optimism α has to

move pro-cyclically, i.e. increase with the market price. In addition, the individual reaction

to market-wide optimism (pessimism) needs to be strong enough, i.e. informed CEU traders

need to become particularly exuberant (desperate).

Theorem 4.4. Necessary Condition for Herding

Consider the CEU model with varying α.

If buy herding occurs with positive probability, then ∃π ∈ (π0; 1) : αS0(π) > ask(π).

If sell herding occurs with positive probability, then ∃π ∈ (0;π0) : αS1(π) < bid(π).

Proof: Due to symmetry reasons, we show only the buy herding statement. (A1) implies

that S0 sells initially while S1 buys initially. Hence, only S0 can buy herd (*BH1). If S0 buy

herds at some price π > π0 (*BH3), then CEUS0(π) > ask(π) (*BH2). Consequently,

(1− δS0)Eπ[V | S0] + δS0αS0(π) > ask(π).

34There are some peculiarities if α = 1 or α = 0. These cases of pure optimism and pessism are discussed
in the Appendix.
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Solving this inequality for αS0(π) after having added and subtracted δS0ask(π) on the r.h.s.

of the inequality, yields

αS0(π) >
δS0 ask(π) + (1− δS0) ask(π)− (1− δS0)Eπ[V | S0]

δS0

.

Now noting that ask(π) > Eπ[V | S0], we infer, that the r.h.s. of the inequality is greater

than ask(π), which proves the statement.

In line with the market maker’s price setting derived in Lemma 4.1, bid and ask in Theorem

4.4 refer to the bid and ask prices that are quoted in the similarly parameterized baseline

herd model without ambiguity.

Let us provide some additional intuition regarding the buy herding condition. (A1) im-

plies that only S0 sells initially. In particular, the low signal initially values the asset at

Eπ0 [V | S0], i.e. she is neither particularly optimistic nor pessimistic. Even as the asset price

π appreciates, the additive part of the low signal’s asset valuation Eπ[V | S0] remains well

below the ask price, compare Section 2. Hence, S0 will only decide to buy at some price

πt > π if her degree of optimism αS0(π) is large enough to compensate for this fact. Since

αS0(π0) = E[V | S0] < Eπ[V | S0], this means that it is necessary for buy herding, that

αS0(π) >> αS0(π0), i.e. S0’s degree of optimism has to increase with the asset price. An

incremental rise of αS0 would, however, be insufficient.

The minimum requirement for S0 to value the asset above the ask price is αS0 > ask > π.

Noting that αS0(π0) < π0, this implies that buy herding requires that αS0(π)− αS0(π0) >>

π − π0. Such a disproportionate surge in individual optimism compared to the increase

of optimism exhibited by the market, can well be interpreted as (possibly unwarranted)

exuberance on the part of the S0 type trader. The intuition is similar for sell herding of S1.

We would, however, label the required disproportionate increase in individual pessimism as

(potentially exaggerated) desperation of the S1 type traders.

Sufficient Condition: Before stating the formal sufficient condition for herding, let us

develop some intuition first. Sufficiency for e.g. buy herding requires that at some point the

degree of optimism α surmounts the ask price for good, i.e. ∃π∗ > π0, where π∗ < 1 such
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that α(π) > ask(π) for all prices π ∈ (π∗; 1). If such an optimism function coincides with

high primary ambiguity δ0, then this is sufficient for S0 to buy the asset, at least for prices

in a neighborhood of 1.

If δ0 is large the trader’s lack of confidence in her additive belief component is strong.

Consequently, her asset valuation is strongly biased towards the non-additive component

α. If her faith in her gut-feeling is sufficiently strong, α(π) > ask(π) over-compensates the

fact that her additive belief component Eπ[V | S0] < ask(π) driving her asset valuation

CEUS0(π) above the ask price for π close to 1. If primary ambiguity is too low, then no

amount of optimism will ever drive the low signal’s valuation of the asset above the ask

price.35

This sufficiency condition is in line with the intuition that for example retail traders are

more prone to herding than professionals. Indeed, the worse a trader’s understanding about

financial markets in general and the functioning of a particular financial asset, the higher her

degree of perceived primary ambiguity and the more likely, that she will eventually engage

in herd behavior.

Theorem 4.5. Sufficient Condition For Herding

Consider the CEU model with varying α.

Let the level of primary ambiguity

δ0 > 1− µ(1− q) + θ

q(µ+ 2θ)
,

where q denotes the signal precision, µ the informed trader share and θ := (1 − µ)/3 is the

probability that a noise trader buys, sells or holds one unit of the asset.

If αS0(1) = 1, then buy herding occurs with positive probability.

If αS1(0) = 0, then sell herding occurs with positive probability.

Proof: The mathematical proof is again left to the Appendix. The principal idea of the

proof has been outlined prior to the statement of Theorem 4.5.

A few remarks regarding Theorem 4.5 are in order.

First, the requirement that αS0(1) = 1 (αS1(0) = 0) has intuitive appeal. In the limiting

35Compare the case of a pure optimist in the Appendix.
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case, when the market becomes confident about either state of the world beyond any doubt,

i.e. if risk vanishes completely, then even CEU traders who perceive ambiguity should value

the asset at 1 and 0 respectively.

Second, we note that the minimum required amount of primary ambiguity δ0 depends

on the informed trader share µ and the signal precision q. Comparative static analyses reveal

that δ∗0 = 1 − µ(1−q)+θ
q(µ+2θ) increases in both µ and q.36 That is, an increase in µ and q tends

to reduce investor proclivity to engage in herd behavior. This appears to be intuitive in the

case of q. Better informed traders should ceteris paribus be less easily swayed by the crowd

to change their trade decisions. In the case of µ the result is driven by the fact that the

market maker faces a higher risk that his counter-party is informed. To compensate for that

risk, he quotes a higher bid-ask spread which makes extreme switches of traders from selling

to buying and vice versa less likely, compare the discussion of the impact of information risk

on herding intensity in Paper ?? of this thesis.

Finally, we note that the way Theorem 4.5 is stated, it hinges on (A2). A general version

of the sufficiency result that does not require (A2) is provided in Section 8.B in the Appendix

of this paper.

The question remains, whether we expect to observe herding implied by Theorems 4.4 and

4.5 in the real world.

Since there is strong evidence that risk aversion moves pro-cyclically, see e.g. Boller-

slev et al. (2011), we conjecture that ambiguity aversion or optimism should exhibit similar

features given the conceptual proximity of these preference parameters.

Moreover, we would argue that there are abundantly many real-world examples where

investor behavior showed corresponding characteristics. Popular precedents are the dot-com

bubble at the turn of the millenium, the recent US house price bubble as well as the bubble

of the Shanghai Composite Index in 2015.

Finally, the relevance of investor herding under ambiguity can be motivated micro-

economically by the findings of Heath and Tversky (1991). They provide experimental ev-

idence that once the judged probability of an ambiguous event is high, individuals tend to

become ambiguity loving. If the price πt is in a neighborhood of 1, even an S0 type trader is

fairly confident that the high state is true. Hence, according to Heath and Tversky (1991),

36The formal derivation of these results is based on elementary calculus and has, thus, been omitted from
the paper.
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S0 should assign a higher probability to the high state than prescribed by her additive be-

lief component.37 This would support the idea of Theorem 4.5 that (potentially irrational)

exuberance and despair may drive investor herding at least for prices close to 1 and 0.

A Class of Optimism Functions Allowing for Investor Herding: We provide a class

of optimism functions α(π|q, π0) that are sufficient for herd behavior if δ0 > 1− µ(1−q)+θ
q(µ+2θ) .

For the low signal, we have

αS0(πt) =

E[V | S0, πt] + E[V | S0, πt]πt−β1β1
, if πt ≤ β1

E[V | S0, πt] + (1− E[V | S0, πt])πt−β11−β1 , if πt > β1,
(5)

where β1 ≥ π0. If β1 = π0, then in line with (A1) the corresponding CEU asset valuation of

the low signal is initially equal to the additive component, i.e. CEUS0(π0) = E[V | S0]. The

larger β1, the more pessimistic S0 and the longer it takes before the low signal eventually

becomes exuberant. S0 needs to observe a much stronger buy side accumulation of traders

before she will decide to follow the crowd and buy the asset. Indeed, note that for β1 > π0,

we have CEUS0(π0) < E[V | S0] which means that S0 initially has a pessimistic view on the

investment opportunity. She needs to overcome this a priori skepticism before she becomes

inclined to invest in V . As long as β1 < 1, sufficiency for buy herding as implied by Theorem

4.5 holds.

Similarly for the high signal, we have

αS1(πt) =

E[V | S1, πt] + E[V | S1, πt]πt−β2β2
, if πt ≤ β2

E[V | S1, πt] + (1− E[V | S1, πt])πt−β21−β2 , if πt > β2,
(6)

where β2 ≤ π0. The interpretation of β2 for the high signal is symmetric to the interpretation

of β1 for the low signal.

37Note that strong pessimism also reflects ambiguity lovingness in the sense of Heath and Tversky (1991).
The mere difference is that a high degree of confidence regarding the low state causes CEU traders to assign
a higher probability to the low state, than their additive belief would dictate.
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4.3.2 Contrarianism With Varying α

The intuition and mechanisms driving contrianism are the same for varying α as under GBU.

Thus, we do not provide formal necessary and sufficient conditions. We point out, however,

that necessary conditions for contrarianism can be stated in a similar fashion as for herding.

One simply has to exchange the intervals from which π is chosen in Theorem 4.4. For suffi-

ciency, consider a CEU trader, whose degree of optimism α essentially stays constant for all

π ∈ [ε; 1 − ε] or even changes in a countercyclical fashion, then by similar arguments as in

Section 4.2, the initial valuation of the low (high) signal would rise above (drop below) the

ask (bid) price as the price decreases (increases).

Now, that we have derived fairly general conditions for herding and contrarianism in the

CEU model, we shall shift our focus on the analysis of market outcomes and social learning.

4.4 Market Outcomes and Social Learning in the CEU Model

This section illustrates that herding and contrarianism in the CEU model have an equal po-

tential to prevent the market from learning about the asset’s fundamental value and to move

prices away from fundamentals.

Monotonicity of the informed trader expectations, i.e. CEU [V | S0, Ht] < CEU [V | S1, Ht],

implies that whenever an informed trader type engages in herding or contrarianism all in-

formed traders take the same action. That is, both types of investor behavior necessarily lead

to an informational cascade. If an informational cascade occurs at t, social learning stops

and the price fixes at π∗ until the end of trading, i.e. πτ ≡ π∗ for all t < τ ≤ T . Such a price

consensus is inherently inefficient since it prevents the market from learning about the asset’s

true value and consequently from pricing the asset at it’s fundamental, compare Chamley

(2004).

In that sense, herding as well as contrarianism in the CEU model lead to inefficient

market outcomes. This would be of minor concern if prices generally moved towards the

asset’s fundamental until the informational cascade takes place. That is, if V = 1 (V = 0),

we observed π∗ > π0 (π∗ < π0) with high probability. This is, however, not necessarily the

case as we illustrate by discussing Figures 3 and 4.
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Figure 3: Irrational exuberance and buy herding

Notes: Informed trader asset valuations CEUS , bid price bidCEU and ask price askCEU are depicted with
respect to the price πt. The primary ambiguity is δ0 = 0.5, the informed trader share is µ = 0.3, the initial prior
is π0 = 0.5 and the signal precision is q = 0.6. α·(πt) is given by Equations (5) and (6) with β1 = β2 = 0.5.

Figure 3 depicts a situation, where the low signal S0 (the high signal S1) engages in buy

(sell) herding with positive probability. We focus only on the buy herding case. Ini-

tially, at π0 = 0.5, the low signal values the asset as if she was an SEU maximizer, i.e.

CEUS0(π0) = Eπ0 [V | S0]. The low signal’s optimism function αS0 ensures that her asset

valuation CEUS0(π) is highly elastic with respect to the degree of optimism exhibited by

the market. Indeed, as S0 observes an increasingly strong price upsurge, she not only con-

tracts the optimistic market sentiment but really becomes overly enthusiastic regarding the

prospect of investing into the risky asset V .

As the price π rises above π1, the low signal changes her trading decision from selling

to holding. In line with Lemma 4.1, the quoted bid price is equal to S0’s valuation of the

asset. As CEUS0(π) becomes greater than πt, the market maker quotes a bid price equal to

πt. If additional buys are observed, the price πt eventually rises above π2. At that point,

S0’s exuberance causes her to start buy herding. An informational cascade occurs, since

all informed trader types buy at that point. Social learning stops and the price is fixed at

π∗ = 0.75.38

38Note, that the discontinuity of the ask price at π = 0.26 indicates that the symmetrically modeled high
signal starts selling. An informational cascade occurs, because at that point all informed traders sell and the
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Figure 4: Market outcomes under contrarianism

Notes: Informed trader asset valuations CEUS , bid price bidCEU and ask price askCEU are depicted with
respect to the price πt. The degree of optimism is α = 0.5 for both informed trader types, the primary
ambiguity is δ0 = 0.3, the initial prior is π0 = 0.5, the informed trader share is µ = 0.3 and the signal precision
q = 0.6.

To see that π∗ = 0.75 becomes the price consensus with relevant probability even if

the low state is true, i.e. if V = 0, note that S0 engages in buy herding if the trade history

contains at least 7 more buys than sells. Even though V = 0, there is ample potential for

a buy side accumulation of traders. All high signals and one third of the noise traders buy

the asset upon arrival. As long as there is no informational cascade, the buy probability, i.e.

the probability of a price increase, is µ(1 − q) + θ = 0.353 for the model parameterization

of Figure 3. Similarly, the probability to observe a price decrease is µq + θ = 0.413. Given

the high short-term dispersion of a price-process that is governed by these probabilities, it is

apparent that the likelihood of prices moving away from fundamentals due to herding is far

from negligible. The situation is symmetric for sell herding if V = 1.

Figure 4 illustrates the case where the low signal (high signal) may become a buy (sell)

contrarianist. In line with the GBU rule, α = 0.5 for both informed trader types. Assuming

that π0 = 0.5, S0 sells initially and S1 buys initially. Let us focus on the buy contrarianism

case. As sells are observed, the asset price π decreases. As π falls below π2, S0 stops selling

price is fixed at 0.25.

30



and starts holding. If additional sells cause the price to drop below π1, S0 switches from

holding into buying, thus acting as a buy contrarianist. Since at that point both informed

trader types buy the asset, an informational cascade occurs. Social learning stops and the

asset price remains constant at 0.3 = π∗ < π1 for all remaining trade periods.

Now, assume that V = 1 is the true state. The probability of a price decrease in t is

µ(1 − q) + θ = 0.353 as long as there is no informational cascade.39 This is due to the fact

that the low signal reveals her private information through her action regardless of whether

she sells or holds, compare price updating in Lemma 4.2. If S0 sells (holds), prices decrease

after an observed sell (hold).

If the trade history contains at least 4 more sells than buys, S0 engages in buy contrar-

ianism. The market “agrees” with considerably positive probability to depreciate the asset

value to 0.3 = π∗ even though V = 1 is the true state.

To make these insights more precise, we derive a formula for the probability of such wrong

cascades due to herding as well contrarianism in the following section. We can use this for-

mula to conduct comparative statics on the likelihood that herders and contrarians move

prices away from fundamentals.

4.5 Investors Moving Prices away from Fundamentals - Deriving the Prob-

ability of a Wrong Cascade

We have illustrated that herding and contrarianism in the CEU model may lead to price

distortions. The aim of this section is to quantify the probability of such an event and inves-

tigate how this probability is related to other model parameters.

To keep things tractable, let us assume without loss of generality that either herding or

contrarianism are possible but not both. In addition, we assume symmetry of αS0 and αS1 in

the sense that the minimum number of price increases (decreases) after which the informed

traders start herding or acting as contrarians are the same for the high and low signals.40 We

denote this number as n∗.

Under these assumptions the probability of prices moving away from fundamentals co-

39The probability of price increase is µq + θ = 0.413.
40This also includes the GBU case of fixed α. The result easily generalizes to the case where the symmetry

assumption is dropped. A look at the proof of Lemma 4.6 in the Appendix will reveal why this is true.
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incides with the probability of a buy herding (sell contrarianism) induced cascade if V = 0

and vice versa a sell herding (buy contrarianism) induced cascade given V = 1. We obtain

Lemma 4.6. Probability Of A Wrong Informational Cascade

Consider the CEU model, where either herding or contrarianism is possible. Let n∗ be the

minimum number of price increases (decreases) after which the low (high) signal starts herd-

ing or acting as a contrarian. Then, the probability of an informational cascade where all

informed traders buy herd (act as sell contrarians), given that V = 0, is equal to the probabil-

ity of an informational cascade where all informed traders sell herd (act as buy contrarians),

given that V = 1. This probability is given by

Pn∗ =
1

exp
(
− ln

(
µ(1−q)+θ
µq+θ

)
n∗
)

+ 1
. (7)

Proof: The proof is fairly technical and, thus, details are left to the Appendix. The idea of

the proof is that the probabilities to observe a price increase, decrease or constant prices are

the same as long as there is no informational cascade. This makes the problem of calculat-

ing Pn∗ equivalent to a two-sided gambler’s ruin problem with 2n∗ possible states. We can

specifiy the transition probabilities in each state. Then standard techniques of linear algebra

yield the desired result.

To get a broader perspective of how the probability of wrong cascades reacts to shifts in

model parameters, let us analyze the comparative statics of Pn∗ .

Lemma 4.7. Comparative Statics Of Price Distortions

In the CEU model, the probability of prices moving away from fundamentals Pn∗

• Decreases with the informed trader share µ;

• Decreases with the signal precision q;

• Increases with the degree of primary ambiguity δ0;

• Increases with the degree of individual optimism α if investors are prone to herding;

• Decreases with the degree of individual optimism α if investors are prone to contrari-

anism;
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Proof: Since the proof is fairly technical, it is left to the Appendix.

The results of Lemma 4.7 are fairly intuitive. Since µ can be seen as the quantity of funda-

mentally relevant information in the market and q can be viewed as the quality of the same,

it is straight forward that an increase of both should reduce the likelihood that prices move

away from fundamentals. If there are more and better informed traders, then prices should

more accurately reflect the asset’s true value.

Likewise an increase in primary ambiguity δ0 will make investors more prone to irra-

tional exuberance (desperation) in the case of herding and will make the belief updating of

potential contrarian traders even more sluggish. In both cases, higher ambiguity will cause

CEU traders to rely more on their gut feeling which may advise them to take wrong actions.

Hence the probability of prices moving away from fundamentals increases. The different re-

sults for a change in α stem from the fact that we see α as a function in π. We define an

increase in α as a general increase of individual optimism elasticity with respect to a change

in market sentiment π.41 Now, consider a CEU trader who is prone to contrarianism. If her

individual optimism reacts more elastically to price changes, then her belief updating tends

to be less sluggish, thus, reducing her contrarian tendencies. Similarly if the CEU trader

is prone to herding, a higher α implies that her willingness to ignore her private signal and

follow the crowd increases.

We have investigated the conditions under which herding and contrarianism are possible

in the CEU model. Both lead to informational cascades and, thus, prevent the market from

confidently learning about the true state and may cause price distortions. In fact, we find

that price distortions are equally likely under contrarianism and under herding. Given the

antithetical nature of the two types of behavior, however, we would have expected that herd-

ing and contrarianism result in different market outcomes. To carve out these differences

we shall depart from the assumption that investor preferences are common knowledge and

consider a perturbed version of the model. We will discuss the details of this approach and

it’s insights in the next section.

41Formally, α1 is said to be greater than α2 if and only if α1(π) < α2(π) ∀π ∈ (0;π0) and α1(π) > α2(π)
∀π ∈ (π0; 1).
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5 Price Dynamics under Herding and Contrarianism - the

Perturbed CEU Model

This section provides insights regarding differences of stylized price dynamics under herding

and contrarianism, respectively. In the CEU model, however, herding and contrarianism

lead to informational cascades, i.e. constant prices. To circumvent this issue, we assume

that market participants exhibit marginal uncertainty regarding investor preferences. The

resulting setup is called the perturbed CEU model because it resembles in spirit the concept

of a perturbed game.

5.1 The Perturbed CEU Model

All definitions and assumptions from Sections 2 and 3 hold. In particular, all informed traders

are CEU maximizers. Yet, now we assume that market participants perceive ambiguity re-

garding informed traders’ preferences. That is, they do not fully discount the possibility

that informed traders are ambiguity neutral. More precisely, the market believes that in-

formed traders have neo-additive CEU preferences with probability 1 − ε and are expected

value maximizers as in the baseline model with probability ε for some arbitrarily small ε > 0.42

The most important property of the perturbed CEU model is the absence of (full) infor-

mational cascades. Figure 5 illustrates this fact by showing that even under herding and

contrarianism the market maker quotes a positive bid-ask spread. This implies that the mar-

ket still infers information from observed trade decisions at even if all informed traders take

the same action in t. As a consequence, the price πt continues to evolve under herding and

contrarianism in the perturbed model.43

The absence of informational cascades stems from the market’s belief that a share of ε

of the informed traders are expected value maximizers and, thus, behave as in the baseline

model. Consider for instance a situation where both signals buy the asset (e.g. buy herding

42The fact that market participants perceive ambiguity regarding other informed traders’ preferences is in
line with the game theoretic literature, compare e.g. Eichberger and Kelsey (2014) and Eichberger and Kelsey
(2000). In the context of these frameworks an agent’s belief regarding the other players’ ambiguity preferences
may deviate from the truth.

We note that Ford et al. (2013) focus their analysis exclusively on the somewhat extreme case of ε = 1.
43The corresponding formal results on market maker price setting and price updating are notationally tedious

in the perturbed CEU model and, thus, left to Section 8.C in the Appendix of this paper, see Propositions 8.6
and 8.7.
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(a) Herding

(b) Contrarianism

Figure 5: Herding and contrarianism in the perturbed model

Notes: Figure (a) depicts informed trader asset valuations CEUS , bid price bidε−CEU and ask price askε−CEU

with respect to the price πt in a market prone to herding. For illustrative purposes, we set ε = 0.25. The
primary ambiguity is δ0 = 0.5, the informed trader share is µ = 0.3, the initial prior is π0 = 0.5 and the signal
precision is q = 0.6. α·(πt) is given by Equations (5) and (6) with β1 = β2 = 0.5. Figure (b) depicts informed
trader asset valuations CEUS , bid price bidε−CEU and ask price askε−CEU with respect to the price πt prone
to contrarianism. For illustrative purposes, we set ε = 0.25. The primary ambiguity is δ0 = 0.3, the informed
trader share is µ = 0.3, the initial prior is π0 = 0.5 and the signal precision is q = 0.6. α = 0.5 for both
informed trader types in line with GBU.



in Figure 5 (a)). The market believes that a share of ε of the S0 type traders still acts as in

the baseline model without ambiguity and sells the asset, compare Proposition 2.1. Hence,

an observed sell is viewed to contain some information as the market does not fully discount

the possibility that the trade is carried out by an S0 type informed trader. Consequently, πt

decreases in line with Bayes’ rule after a sell is observed. The argument is similar for a price

increase after an observed buy.

Note, however, that the amount of information inferred from a trade under herding

and contrarianism may be very small, particularly if ε is small. Consequently, herding and

contrarian regimes can be seen as partial informational cascades in the sense of Avery and

Zemsky (1998) and Park and Sabourian (2011).

The second key property of the perturbed model is that it inherits the results regarding

the necessary and sufficient conditions for herding and contrarianism derived in the CEU

model, see Theorems 4.3, 4.4 and 4.5. To see why this is true, assume that in line with (A1)

the low signal sells initially while the high signal buys initially. As long as S1 buys and S0

does not, the market maker quotes the same ask price as in the CEU and baseline model

without ambiguity.44 Since S0’s asset valuation is also not affected by the perturbation as-

sumption, the conditions for CEUS0 surpass the ask price, i.e. for S0 to buy herd or act as a

buy contrarian are the same as in the CEU model.

Indeed, since the model parameterizations in Figures 5 (a) and (b) coincide with the

ones used for Figures 3 and 4, respectively (aside from the perturbation parameter ε), the

cut-off prices for herding and contrarianism (π∗, π∗∗) from Figures 5 (a) and (b) are precisely

equal to the corresponding cut-off prices depicted in Figures 3 and 4.

Since we have established that herding and contrarianism are possible in the perturbed CEU

framework and that learning always continues we can now study how prices evolve under

herding and contrarianism.

5.2 Prices under Herding and Contrarianism in the Perturbed CEU Model

Before deriving formal results we want to develop some intuition for the price dynamics by

looking at the price process’ transition probabilities under the different regimes.

44Compare market maker pricing results for the CEU model (Lemma 4.1) and the perturbed model (Propo-
sition 8.6 in Section 8.C in the Appendix).
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Probability of a Probability of a Probability of a

Price Increase Price Decrease Constant Price

Buy Herding µ+ θ θ θ

Sell Contrarianism θ µ+ θ θ

Sell Herding θ µ+ θ θ

Buy Contrarianism µ+ θ θ θ

Table 1: Transition probabilities for πt under herding and contrarianism

Notes: This table reports the transition probabilities of the price process in the perturbed CEU model given
that CEU traders herd or act as contrarians respectively. µ is the share of informed traders. θ = (1− µ)/3 is
the probability for a noise trader to either buy, sell or hold.

Table 1 reports the probabilities of whether πt moves up, down or remains constant given

that investors herd or act as contrarians. We note that under all four regimes a price increase

(decrease) coincides with an observed buy (sell). As a consequence, the probability for a price

increase (decrease) is the same as the probability of a buy (sell). The same argument applies

for constant prices and observed holds.45

Consider for instance the case of buy herding. The total probability of observing a buy

is the probability of an informed buy plus the probability of a noise buy. Since under buy

herding all informed traders buy the asset, the probability of an informed buy is µ. Similarly,

since one third of the noise traders buys the asset, the probability of observing a noise buy is

θ = (1− µ)/3. Thus, the total probability of observing a buy under buy herding and, hence,

a price increase is µ+ θ. Likewise, since the only traders selling under buy herding are noise

traders, the probability of observing a sell and, thus, a price decrease is θ.

By a similar line of reasoning the probability of a price decrease under sell contrarianism

is µ + θ. Since only noise traders buy under sell contrarianism, the probability of a price

increase is θ.

Avery and Zemsky (1998) show that the price in their model eventually converges to 1 if

the majority of the informed traders buys while it converges to 0 if the majority of the

45Compare the price updating rules in the perturbed model summarized in Proposition 8.7 in Section 8.C
in the Appendix for details.
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informed traders sells.

The same principal should govern the price process in the perturbed CEU model under

herding and contrarianism. We conjecture that buy herds in the perturbed CEU model push

prices towards 1 (the majority buys), while sell contrarianists pull it back towards π0 (the

majority sells). Similarly, sell herds should push the price towards 0 while buy contrarians

pull it back up towards π0.

These hypotheses are confirmed by the following two propositions.

Proposition 5.1. Prices in the Perturbed Model - Herding

In the perturbed CEU model, let π∗ < π0 (π∗∗ > π0) be the cut-off prices, such that S1 sell

herds for all π < π∗ (S0 buy herds for all π > π∗∗).

Then the market will become confident regarding the low (high) state with positive probability,

regardless of the true state of V .

Proof: We discuss the proof for the buy herding case only. The sell herding case is symmet-

ric. For the buy herding statement we need to show that P ( lim
t→∞

πt = 1) > 0. First note that

by the law of total probability, we have

P ( lim
t→∞

πt = 1)

= P ( lim
t→∞

πt = 1|∃τ ≥ 0 : πτ > π∗∗)P (∃τ ≥ 0 : πτ > π∗∗).
(8)

The second probability on the r.h.s. of Equation (8) is greater zero by the assumption

that buy herding is possible. For the first probability on the r.h.s. of Equation (8), we

define πBHt := (πt|πt > π∗∗) to be the price process under buy herding. Observe that

πBHt is a sub-martingale with respect to the history Ht, i.e. E[πBHt+1 |Ht] > πBHt .46 Then,

the martingale convergence theorem implies that πBHt → Π for t → ∞ almost surely, i.e.

P ( lim
t→∞

πBHt = Π) = 1.

Since, the sub-martingale property implies that πBHt ∈ (π∗∗; 1) increases almost surely for

t→∞ and since πBHt < 1 for all t by definition, it follows that Π = 1.

This implies that P ( lim
t→∞

πt = 1|∃τ ≥ 0 : πτ > π∗∗) > 0 and, thus, concludes the proof that

a market prone to buy herding will become confident regarding the high state with positive

probability regardless of the true state of V .

46The proof for this is left to Section 8.C in the Appendix.
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Proposition 5.2. Prices in the Perturbed Model - Contrarianism

In the perturbed CEU model, let π∗ < π0 (π∗∗ > π0) be the cut-off prices, such that S0 acts

as a buy contrarian for all π < π∗ (such that S1 acts as a sell contrarian for all π < π∗).

Then the price will rise above π∗ (drop below π∗∗) again almost surely.

Proof: Consider the sell contrarian case. We need to show that P (∃τ > t : πτ ≤ π∗∗|πt >
π∗∗) = 1.

Similar to before, we define πSCt := (πt|πt > π∗∗). We observe that πSCt is a super-martingale

with respect to the history Ht, i.e. E[πSCt+1 | Ht] < πSCt .47 In other words, prices fall almost

surely as long as there is sell contarianism. Moreover, there exists a π̃t > π∗∗ such that

π̃t+1 < π∗∗ if there is a sell in t. Both arguments together yield that the price will drop

below π∗∗ almost surely given there is sell contrarianism at some time t. The argument is

symmetric for buy contrarianism.

Propositions 5.1 and 5.2 state that the price evolves quite differently under herding and

contrarianism in the perturbed CEU model. According to Proposition 5.1, herding causes

the market to become confident about one of the states. A buy herd eventually drives the

price towards 1 while a sell herd drives the price towards 0. Since this may happen regardless

of the true state of V , the perturbed CEU model predicts that the market herds on the wrong

state with positive probability.48

In line with Proposition 5.2, contrarianism prevents the market from learning about the true

state and anchors the price on some interval π∗ < π0 < π∗∗. Hence, both types of investor

behavior still distort prices but they do so in very dissimilar ways.

The different stylized price movement under herding and contrarianism in the perturbed

CEU model are illustrated in Figure 6.

47The proof for this is left to Section 8.C in the Appendix.
48Note that this result partly driven by the assumption that the market operates under the wrong assumption

that a share of ε traders are SEU maximizers. Still, it provides qualitatively valuable insights as it is fair to
assume that investor preferences are typically not accurately estimated in the real world. Since, moreover,
there is a strong consensus regarding the validity of the efficient market hypothesis, we conjecture that markets
tend to underestimate the share of investors deviating from SEU.
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(a) Confident Herding On The Wrong State

(b) Anchored Price Movement und Contrarianism

Figure 6: Prices under herding and contrarianism

Notes: Figure (a) shows a simulated price path under herding for T = 2000 time periods. As before, the
primary ambiguity is δ0 = 0.5, the informed trader share is µ = 0.3, the initial prior is π0 = 0.5 and the
signal precision is q = 0.6. α·(πt) is given by Equations (5) and (6) with β1 = β2 = 0.5. The pertubation
term is ε = 0.25. Figure (b) shows a simulated price path under contrarianism for T = 2000 time periods.
The primary ambiguity is δ0 = 0.3, the informed trader share is µ = 0.3, the initial prioris π0 = 0.5 and the
signal precisionis q = 0.6. α = 0.5 for both informed trader types in line with GBU. The pertubation term is
ε = 0.25.



The herding case is depicted in Figure 6 (a). In line with the previously illustrated model

outcome in Figure 5 (a), S0 engages in buy herding as soon as the price surpasses π∗∗.49

The first buy herd forms right before period 400. We observe, that this buy herd is broken

shortly thereafter. This is due to a random arrival of noise traders selling the asset who push

the price below π∗∗. When the second buy herd starts after period 400, however, it persists

until period T = 2000. The sub-martingale property now governs the price process resulting

in a long term price increase towards 1. Thus, the longer the herd persists, the less likely

it is broken. In line with Park and Sabourian (2011) we refer to this as the self-enforcing

nature of herding. By period 800, the price is well above 0.9. For it to fall below π∗∗ = 0.74

again, many consecutive (noise trader) sells would have to be observed. The probability for

such an event is already very small. Indeed, since we expect πt to increase further on average

(sub-martingale property), the probability of the herd being broken vanishes as t→ T . Note

that the market becomes confident that the asset’s true value is 1, while V in fact is 0, i.e.

the market confidently herds on the wrong state.

Also observe that the price is considerably less volatile when S0 type informed traders buy

herd compared to when they do not. This is in line with the characteristics of a partial

informational cascade. Since the market is certain that most informed traders have CEU

preferences and knows that they engage in buy herding as π > π∗∗, the informational content

the market infers from an observed trade drops significantly under buy herding. Since the

price dynamics are mainly determined by the inferable information from an observed trade,

prices become less volatile when S0 buy herds, compare Avery and Zemsky (1998) and Park

and Sabourian (2011).50

The price evolution under contrarianism is depicted in 6 (b). In line with Figure 5 (b), S0

engages in buy contrarianism (S1 engages in sell contrarianism) as soon as the price surpasses

π∗∗ (falls below π∗). In line with Proposition 5.2, the price mainly stays on (π∗;π∗∗). The

contrarian regimes are always very short due to the self-defeating nature of contrarianism,

compare Park and Sabourian (2011). As soon as the price exceeds π∗∗, for instance, sell

contrarians pull the price below π∗∗ again causing the regime to end rather quickly. As a

consequence, contrarians prevent the market from becoming confident regarding either state

and, hence, from learning. In T = 2000, the asset price is still very far away from the asset’s

49Note, that the model parameterizations in Figure 6 are exactly as the corresponding model parameteri-
zations in Figure 5.

50In the case of an informational cascade the information content of a trade is 0 and, thus, the price remains
constant, compare the CEU model.
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fundamental value V = 0.

While for given model parameterization the price evolution is always similar in a market

prone to contrarianism, the outcome could have been different under herding. A sell herd

could have driven the price towards the asset’s fundamental value of 0. As a consequence,

we want to study the a priori probability of a wrong herd similar to the CEU model.

5.3 Price-Distorting Herding in the perturbed model

Quantifying the probability of price-distorting herds in the perturbed model is more compli-

cated than in the CEU model. When informed traders change their trade decisions in the

perturbed model, the probability and the extend of price increases and decreases varies. Yet,

our ability to derive an analytical formula for the probability of wrong cascades in the CEU

model in Lemma 4.6 hinges on the fact that price changes and their probabilities are fix as

long as there is no cascade and trivial when there is an informational cascade. Hence, we are

not able to provide a similarly appealing result for the perturbed model. We can, however,

leverage Lemma 4.6 to infer upper and lower boundaries for the probability of wrong herds:

Lemma 5.3. Probability of Wrong Herds in the Perturbed Model

Consider the perturbed CEU model, where only herding is possible and assume symmetry

between the signals as in Lemma 4.6. Let P εWH denote the probability of a wrong herd in

the perturbed CEU model. Let n∗ be the minimum number of price increases (decreases)

after which the low (high) signal starts herding. Let k∗ < n∗ be the minimum number of

observed price increases (decreases) after which the low (high) signal starts holding. Then

P εWH ∈ [Pn∗ ;Pk∗ ], where P· is as in Equation (7).

Proof: See Appendix.

In the perturbed model, the probability of wrong buy herds tends to be even larger than in

the CEU model. Driver for this result is the market’s erring assumption that a share of ε

of the informed traders are SEU maximizers. As long as preferences are common knowledge

(CEU model), the price process is a martingale and cannot exhibit long term trends away

from the asset’s fundamental. In the perturbed model, on the other hand, such a wrong trend

is possible.
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Let V = 0 be the true state and assume for illustrative purposes that ε = 1, that is,

the market assumes that all informed traders are SEU maximizers although they have CEU

preferences. Once S0 switches into holding, the market does not accurately adjust the asset

price downward anymore. Instead of depreciating the price after an observed hold (CEU

model), the market depreciates the price after a sell. Yet, the probability to observe a sell is

only θ (noise trader sell) since S0 holds. For πt to be a martingale, however, the probability

of a downward revision would need to be µ+ θ.

Hence, price decreases occur less often than they should. This results in an upward drift

in the price process, i.e. a trend away from V = 0 (sub-martingale property). This effect is

amplified if S0 engages in buy herding.

These trends have the overall effect to drive prices away from fundamentals with greater

probability in the perturbed model than in the CEU model.

We note, that the comparative statics of the lower boundary of P εWH are readily provided by

Lemma 4.7. For the comparative statics of the upper boundary Pk∗ , we find that the effect

of an increase in µ is, indeed. An increase in q has weaker effects on Pk∗ than on Pn∗ .

5.4 The Burst Of A Bubble

Given the initial motivation of this paper, we would like to conclude this section by illustrating

how the CEU model can be leveraged to explain the formation and subsequent burst of

bubbles. As we have seen in the previous sections, the perturbed CEU model can explain

the formation of a bubble. Yet, it cannot endogenously produce the burst of bubble before

the asset’s true value is revealed after the final period T .

To overcome this issue, we will allow ambiguity in the perturbed CEU model to be

exogenously removed at some period τ < T . Indeed, it is conceivable that unexpected events

like the September 11 attacks on the United States in 2001 or Mario Draghi’s “whatever it

takes” speech in 2012 may cause jumps in primary ambiguity δ0 or remove it altogether. The

result is illustrated in Figure 7.

The model parameterization used to simulate the price path in Figure 7 allows for (wrong)

herding. The asset’s fundamental value is V = 0. Due to noise trading and trading of high

signals, we observe an increase in the price in the first 70 periods. Shortly after t = 70, the

low signal type traders engage in buy herding for the first time. The buy herd is broken a
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Figure 7: The formation and burst of a bubble

Notes: The figure shows a simulated price path for T = 2000 periods. The primary ambiguity δ0 = 0.5, the
informed trader share is µ = 0.3, the initial prior π0 = 0.5 and the signal precision q = 0.6. α·(πt) is given by
Equations (5) and (6) with β1 = β2 = 0.5. The perturbation parameter ε = 0.25 for illustrative purposes.
Primary ambiguity δ0 is set equal to 0 after t = 800 periods. The true state is V = 0.

few times. A persistent buy herd forms only after period 110. Prices increase further towards

1 in line with Proposition 5.1. This continues until period 800, where some exogenous event

removes the ambiguity, thereby bringing the herd to a halt.

Once ambiguity is removed, informed traders become expected value maximizers. Hence,

S0 type traders sell the asset. Since V = 0 is the true state, there are more S0 type traders

in the market than traders with a high signal. In line with the baseline model, we expect a

price correction and that πt eventually converges towards 0.

Since the informed traders’ signal precision q = 0.6 is relatively low, it takes the market

some time to learn that V = 0 is the true state. It is not before period 1000 that the market

starts learning that the asset is wrongly priced. From period 1000 to 1300 the market corrects

it’s assessment. We observe a sharp decline in the asset’s value accompanied by regimes of

increasing volatility. After period 1300 volatility diminishes as the market becomes increas-

ingly confident regarding the low state and the standard learning mechanisms of Avery and

Zemsky (1998) take predominant effect.
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Event Study - The Subprime Mortgage Crisis: Let us apply these theoretical insights

to real world events in the years 2002 to 2007. Consider Collateralized Debt Obligations

(CDOs), highly complex and non-transparent credit derivatives that enjoyed unprecedented

popularity among investors in the years leading up to the recent global financial crisis in

2007 and became essentially worthless once the underlying collaterals (sub-prime mortgages)

defaulted in large numbers.

In a noteworthy statement of Warren Buffet in the annual report of Berkshire Hathaway

in 2002, he outlaws complex derivatives such as CDOs as time bombs and financial weapons

of mass destruction. He claims that these products depend on too many variables and have

far too long times-to-maturity to be valued accurately. To make things worse, sub-prime

mortgages, i.e. credits with a very high default risk, became a predominant collateral for

CDOs between 2002 and 2007.

If we think of Warren Buffet’s view as rational in an economic sense and take into account

the high risk associated with the CDOs’ collaterals, a rational assessment of CDOs should

result in a low probability for the event “I earn money with CDOs (in the long run)”. At

the same time, Mr. Buffet’s argument implies that the perceived ambiguity associated with

CDOs should be high even among professional traders, i.e. δ0 should be large. Indeed, since

there was insufficient information regarding the actual default risks of the CDO’s collaterals,

let alone correlation structures of defaults, there was no way for investors to accurately assess

the value of a CDO.

The incessantly high AAA-rating of CDOs by US rating agencies added to investors’

perceived ambiguity as it contradicted their objective belief that CDOs with sub-prime mort-

gages as collaterals are inherently risky. In conjunction with increasing evidence of high re-

turns and the general market sentiment - everybody was buying them - this contributed to

a highly optimistic view of investors on the event “I earn money with CDOs (in the long

run)”. In neo-additive terms, this means that investors not only had a high δ but also a

tremendously elastic α. These are the required ingredients for price distorting herding under

ambiguity.

Only after default rates increased across subprime mortgages in the end of 2006 and

the beginning of 2007, investors realized that they had erred. To speak in model terms,

the ambiguity was removed - it then was clear that many CDOs were essentially worthless.

Interestingly, this did not affect the CDO prices at first. Only as time passed and default

rates skyrocketed, the market depreciated CDO prices to reflect their true value.
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6 Robustness Discussion

6.1 Multiple Prior Setup With Smooth Ambiguity Functions

In this section we want address the question, whether our results hold if we choose a different

approach to model ambiguity. For this, we translate the CEU model into a multiple prior

setup and investigate whether similar results hold under the assumption that informed in-

vestors form beliefs according to smooth ambiguity functions as proposed by Klibanoff et al.

(2005).

To model informational ambiguity in a multiple prior context, we follow the ideas pro-

vided by Gollier (2011) and assume that investors find it plausible that the precision of their

signal is either q with probability 1 or it is uniformly distributed across [0; 1]. In addition, we

assume that either distribution for q is considered to be equally likely, i.e. occurs with prob-

ability d = 0.5. This captures informational ambiguity in the sense that the informed trader

has a lack of confidence that her private information signal is fundamentally driven. Thus,

the informed trader’s second-order belief d is closely related the degree of perceived ambiguity

in the neo-additive CEU model. As a suitable family of smooth ambiguity functions, consider

Φ(x) =

exp(−ax), if a 6= 0

x if a = 0
.

The parameter a would reflect the informed trader’s degree of optimism similar to α in the

CEU setup. If a > 0, the informed trader is pessimistic, for a < 0, she is optimistic. For

a = 0, she is ambiguity neutral. The informed traders’ asset valuation is given by

VS =− 1

a
log
(
d

∫ 1

0
exp (−aEq[V | S, π]) dq

+ (1− d) exp (−aEq[V | S, π])
) (9)

if a 6= 0. While we can obtain results similar to Theorems 4.3, 4.4 and 4.5 as well as Lemmas

4.6 and 4.7 by the same arguments as in the neo-additive CEU model, we would loose some

of the intuition provided in this paper. The parameters d and a cannot be linked as nicely

to the parameters in the Avery and Zemsky (1998) framework, as δ0 and α.

To gain some intuition how a pro-cyclical time varying a in the multiple prior setup can

drive (potentially price-distorting) herd behavior, we suggest to set a(p) = −K tan (π(p− 0.5))
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for some K > 0, where in this case p represents the price and π the actual number π.

6.2 Risk Preferences

By the same line of reasoning as for the multiple prior setup with smooth ambiguity func-

tions, we argue that the results of this paper can be reproduced in a framework where in-

formed traders have varying risk preferences. If risk-preferences move pro-cyclically (counter-

cyclically) in the same way ambiguity preferences do, we find that herding (contrarianism)

becomes possible in the Avery and Zemsky (1998) framework.

To see this for herding, take Φ and a(p) as before and note that the informed traders

asset valuation becomes VS = Φ−1 (E[Φ(V ) | S, ·]). For contrarianism, repeat the exercise

with fixed a.51

This is appealing from a theoretical perspective, in the sense that it generalizes the

results presented in this paper. Indeed, experimental evidence from Drehmann et al. (2005)

and Cipriani and Guarino (2005) suggests that investors in the Avery and Zemsky (1998)

baseline model, do engage in contrarian behavior to some extent. This indicates that latent (or

even counter-cyclical) risk preferences may play a role in decision-making underrisk in social

learning settings. The same experiments, however, generally find no evidence of herd behavior

casting strong doubt on the economic relevance of pro-cyclical changes in risk preference for

risky investment decisions.

We would argue that this does not impede the validity of the herding results derived

in this paper. The choices in Drehmann et al. (2005) and Cipriani and Guarino (2005)

are not choices under ambiguity. In line with Heath and Tversky (1991), we conjecture

that investors facing ambiguity, exhibit ambiguity lovingness but not risk lovingness as they

become confident about either state.

When viewing the ambiguity preference parameter α as a measure for optimism and

pessimism it’s link to investor herding is also intuitively more appealing than for risk loving-

ness. While it is conceivable that investors contract optimism exhibited by the market and

become overly enthusiastic regarding an investment opportunity, it is difficult to argue, why

they would all of a sudden like the risk associated with a particular investment.

51This does not come as a surprise, since Décamps and Lovo (2006) show that differences in risk preferences
between informed traders and market maker are sufficient for herding in a setup closely related to the Avery
and Zemsky (1998) framework.
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6.3 More States, More Different Types Of Traders

The results derived in this paper carry over to the more complex versions of Avery and Zemsky

(1998) or the frameworks presented by Park and Sabourian (2011) and Cipriani and Guarino

(2014). The important thing to note is that traders that perceive informational ambiguity

may become prone to herding (contrarianism), even if they receive monotone private signals

in the sense of Park and Sabourian (2011).52 Hence, herd (contrarian) behavior is not limited

anymore to certain signal types like the u-shaped (hill-shaped) trader in Park and Sabourian

(2011) or the low precision signal in Cipriani and Guarino (2014). As a consequence, herds

or contrarianists in those models may consist of much larger shares of informed traders and,

thereby, have the potential to drive prices away from fundamentals even in the long run.

6.4 Heterogeneous Attitudes Towards Ambiguity and Degrees Of Per-

ceived Ambiguity

Instead of assuming a particular α for the informed traders, one could assume that the

degree of optimism is distributed randomly across the population of informed traders. As

the market grows more or less confident about either state, one could shift the mean and the

variance of the distribution. If the mean of that distribution was to shift in a way that it

fulfills the sufficient conditions for herding of Theorem 4.5 and it’s variance was connected

to e.g. the variance of the public belief πt, then herding would still be possible. In that case

not all informed traders with a particular private signal would change their trading decision

simultaneously and there would always be a certain amount of traders that do not change

their decision to follow or act against the crowd. If the share of traders engaging in herd or

contrarian behavior is large enough, however, price distortions are still possible in principle.

Yet, if the distribution of the informed traders is part of the common knowledge structure,

the price process will remain a martingale even under herding or contrarianism, compare e.g.

Avery and Zemsky (1998). Hence, herds, while potentially persistently price-distorting, will

not drive the price towards the wrong state in the long run. A detailed analysis of such a

model would be an interesting avenue for future research.

Similarly, we could consider a heterogeneous population of informed traders that per-

ceive different degrees of primary ambiguity. If the distribution of the primary ambiguity

levels is part of the common knowledge structure of the model, the same argument applies

52In that sense, every signal in a two-state world is monotone.
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as before for the likely model outcomes and, thus should be included in future analyses.
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7 Conclusion

We have provided a comprehensive framework to explain how ambiguity may affect investor

behavior and social learning in the two-state, two-trader version of the Avery and Zemsky

(1998) model. As we review Avery and Zemsky’s model setup without Knightian uncertainty,

we observe that it implies that neither herding nor contrarianism are possible. We find that

ambiguity and an invariant degree of optimism result in strong contrarian tendencies among

informed traders but still preclude herd behavior. When allowing the individual degree of

optimism to vary with market prices, herding becomes possible. It is necessary for herding,

that the individual degree of optimism increases with market prices, i.e. with the degree of

optimism exhibited by the market as a whole. If informed traders become overly exuberant or

gloomy regarding an investment prospect they perceive a sufficiently high amount of primary

ambiguity, then this is sufficient for herding to occur with positive probability.

We find, that herding and contrarianism alike cause informational cascades, thereby,

preventing the market from pricing the asset at it’s fundamental value. Indeed, contrarianism

as well herding moves prices away from fundamentals with positive probability. Such wrong

cascades are qualitatively different for herding and contrarianism. If the market is marginally

uncertain regarding investor preferences, informational cascades are only partial. In that

case, the self-defeating nature of contrarianism bounds prices away from the asset’s potential

fundamental values in the long run. The self-enforcing nature of herding, on the other hand,

has the potential to drive price towards the wrong state.

Aside from the already mentioned theoretical extensions, the natural next step is to

put the theoretical predictions of the CEU model to the test. Conducting experiments in

a similar spirit as Drehmann et al. (2005) and Cipriani and Guarino (2005), where we add

ambiguous components to the information signals to reflect the assumptions of the CEU

model presented in this paper, would be an exciting avenue for future research. Similarly,

one could test experimentally whether ambiguity regarding the distribution of the risky asset

as proposed by Dong et al. (2010) leads to herding or contrarianism respectively.

From an empirical perspective, it may be interesting to investigate possibilities to mea-

sure the degree of primary ambiguity. If we assume for instance, that the absolute number

of professional or expert traders for a particular asset is constant, then an increase in the

number of traders would hint at an increase of average primary ambiguity. Similarly, one

could investigate investor behavior in the aftermath of unexpected events, that are relevant
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to the valuation of the asset. It would be interesting to analyze whether joint evidence of

higher primary ambiguity and investor coordination have predictive power regarding future

price reversals, that would be consistent with price-distorting herding.
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8 Appendix

This Appendix is structured as follows. Section 8.A provides an intuitive example why it is

reasonable to assume that an economically relevant share of market participants perceives

ambiguity when facing investment decisions. Section 8.B contains the all proofs omitted from

the main part. Section 8.C provides the formal results for the perturbed model discussed in

Section 5 in the main part. Section 8.D discusses market outcomes of a purely optimistic

market under GBU, thus detailing the results of Section 4.2 in the main part. Section 8.E

collects results from Avery and Zemsky (1998) that are relevant to this paper. Section 8.F

discusses in further detail the relationship between different definitions for informational

cascades and why we chose the one provided by Avery and Zemsky (1998). Section 8.G is a

repository of the most important definitions and results from Chateauneuf et al. (2007) that

are needed to confirm that our application of NEO-additive CEU preferences to the model

of Avery and Zemsky (1998) is correct. Finally, Section 8.H discusses some inconsistencies

of the GBU rule as prices approach 0 or 1, thereby, supporting the idea that it is reasonable

that α varies with the price.

8.A Example of an Investor Facing Informational Ambiguity

As an example for informational ambiguity, consider a risk-neutral rational retail investor

who has to decide whether or not to buy a particular stock (e.g. BMW - a German car

manufacturer). She will make money on the investment if the price of the stock goes up, she

will lose money if the price goes down.

She receives a recommendation from her online broker to buy the BMW stock but she

has little knowledge about the German automotive industry (and BMW in particular). She

knows her online broker is right 60 % of the times but she is not fully sure about her broker’s

agenda in this case because she sees that the BMW stock price has depreciated during the

past month.

Given that she is rational and risk-neutral, she should buy the stock if and only if she

believes that the price of the BMW stock will rebound with a probability greater than 50%.

In the present case, however, the information does not enable her to determine the relevant

probability exactly.53

53One could argue that she would only need to update an uninformative prior with a noisy signal according
to Bayes’ rule to conclude that the price will go up with 60% probability. Yet, this would only be true if
the retail trader was confident that the online broker’s success probability of 60% does apply to the current
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There are many different ways the retail trader might process the online broker’s rec-

ommendation and the stock price information to arrive at a probability assessment. She

could think that her broker would not make such a recommendation if he did not have some

valid information that the BMW stock price will go up. If such recommendations were made

arbitrarily, the broker would risk to alienate and eventually loose customers who make losses

as they follow the broker’s recommendation. Despite BMW’s recent downturn, she assigns

a probability greater than 50% that the BMW stock price will go up again. Put differently,

she retains an optimistic attitude towards the investment prospect. On the other hand, she

might also think that the broker recommends buying the BMW stock because he wants to

sell out it’s own BMW shares before the price drops further. This pessimistic view would

lead to a probability assignment of less than 50% to an increasing stock price. Finally, she

might retain a skeptical view on the online broker’s recommendation but she might be less

pessimistic than in the previous scenario. Since she knows little about cars and nothing about

the broker’s motivation for the recommendation, she might conclude that she could as well

toss a fair coin to decide what to do, i.e. she assigns a probability of precisely 50% to an

increasing stock price.

8.B Mathematical Proofs

In this section provide the remaining proofs of the main part of this paper.

Proof of Theorem 4.3: To proof this, we restate some of the results of Ford et al. (2013):

Lemma 8.1. In the CEU model with δ0 > 0 and α ∈ [0; 1] fixed and πt ∈ [0; 1], we have

• The ask price in the Avery and Zemsky model is increasing and concave in πt.

• The bid price in the Avery and Zemsky model is increasing and convex in πt.

• CEUS1(πt) is increasing and concave in πt.

• CEUS0(πt) is increasing and convex in πt.

All properties hold in a strict sense.

situation.
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Proof: The proof is provided in Ford et al. (2013).

With this, we can immediately prove the impossibility of herding in the CEU model with

fixed α. We will conduct the proof for the impossibility of herding for the low signal S0. The

proof is symmetric for S1.

Let us start with the impossibility of buy herding. For buy herding to be possible, S0

has to sell initially, i.e.

x1 := CEUS0(π0) < bidCEU (π0) < π0.

Moreover, we have that

y1 := CEUS0(1) = (1− δS0(1)) + δS0(1)α = 1− δS0(1)(1− α) ≤ 1.

Now assume that the market price has increased, i.e. πt > π0. Then πt can be written as a

convex combination of π0 and 1. That is, ∃λ ∈ (0; 1) such that πt = λπ0 + (1 − λ). In line

with Lemma 8.1, convexity of CEUS0(πt) implies that ∀λ ∈ [0; 1], we have

λx1 + (1− λ)y1 > CEUS0(πt).

Since x1 > π0 and y1 ≤ 1, it immediately follows that

λx1 + (1− λ)y1 < λπ0 + (1− λ) = πt ≤ askCEU (πt),

which in turn implies that CEUS0(πt) < askCEU (πt) ∀πt ∈ [π0; 1]. This is equivalent to the

fact that S0 never buy herds.

The assumption of monotonicity of the CEU asset valuation implies that if S0 buys so does

S1. This constitutes an informational cascade and, thus, S0 can never sell herd.

For argument’s sake, however, let us drop the monotonicity assumption for a moment.

Sell herding would then still be impossible: Assume that S0 buys initially (and S1 does not).

Hence, we have

x1 := CEUS0(π0) > π0.
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Moreover, we have again

y1 := CEUS0(1) ≤ 1.

Let m1 := y1−x1
1−π0 . Then m1 denotes the average slope of CEUS0(πt) on [π0; 1]. Since x1 < π0

and y1 ≤ 1, it follows that m1 < 1. Hence, since CEUS0(πt) is convex and increasing, it

follows that
∂CEUS0

∂πt
(π0) ≤ m1 < 1.

Again invoking that x1 > π0, this implies that the tangent Θ1 of CEUS0 in π0 lies above

πt on [o;π0]. Moreover, convexity of CEUS0 implies that CEUS0 ≥ Θ1 for all πt. Hence,

we conclude that bidCEU (πt) < πt < θ1 ≤ CEUS0 for all πt ∈ [0;π0], which precludes the

possibility that S0 engages in sell herding.

We continue the proof by showing the possibility of contrarian behavior for S0. Again,

the argument is symmetric for the high signal.

Let S0 sell initially, then only buy contrarianism is possible. Hence, we have to find a

πt ∈ (0;π0), such that CEUS0(πt) > askCEU (πt). Noting that

CEUS0(0) = δS0(0)α > 0 = askCEU (0),

continuity of CEUS0 and askCEU implies that CEUS0 > askCEU in a whole neighborhood of

zero, i.e. ∃ε > 0 : CEUS0(πt) > ask(πt) ∀πt ∈ [0; ε]. But this already implies that S0 engages

in buy contrarianism ∀πt ∈ [0; ε].

As before, monotonicity of CEU beliefs actually prevents sell contrarianism of S0 from be-

ing possible. For argument’s sake, let us drop this assumption for a moment. Then sell

contrarianism of S0 is indeed possible.

Let S0 buy initially. For S0 to act as a sell contrarian, we have to find a πt ∈ (π0; 1),

such that CEUS0(πt) < bidCEU (πt). Noting that

CEUS0(1) = (1− δS0(1)) + δS0(1)α = 1− δS0(1)(1− α) < 1 = bidCEU (1)

and invoking a continuity argument as before implies that there exists ε̃ > 0 such that

CEUS0(πt) < bid(πt) ∀πt ∈ [1− ε̃; 1]. Hence, S0 may engage in sell contrarianism.
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Note that for the impossibility of buy herding, we could have actually shown that CEUS0 <

bid for all π ∈ [π0; 1]. Intuitively, the argument would be that the increase of CEUS0(π) in π

is lower than the increase of the low signal’s SEU belief E[V | S0, π] from the baseline model.

Monotonicity in conjunction with convexity of CEUS0 and E[V | S0, π] as well as the fact

that E[V | S0, 1] = 1 imply that CEUS0 must remain below the bid price. That is, even weak

forms of herding, i.e. switches from selling (buying) to holding are impossible if α is fixed.

Proof of Theorem 4.5: Again due to symmetry, we show only the buy herding state-

ment. First, we note that αS0(1) = 1, implies that CEUS0(1) = 1 = ask(1), where

ask(·) ≥ askCEU (·) denotes the ask price from the baseline model, see Equation (35).

Noting that (A2) implies that CEUS0 is regular, we get

∂CEUS0

∂π
=

∂

∂π
[(1− δS0(π))Eπ[V | S0] + δS0(π)αS0(π)]

= (1− δS0(π))
∂

∂π
Eπ[V | S0] + δ′S0

(π) (αS0(π)− Eπ[V | S0])

+δS0(π)α′S0
(π)

and evaluating it at π = 1, we get

∂CEUS0

∂π
(1) = (1− δS0(1))

∂

∂π
E1[V | S0] + δS0(1)α′S0

(1), (10)

where we used the fact that αS0(1) = E1[V | S0] = 1. Since α′S0
(1) = 0 due to (A2), we infer

that CEUS0 must be strictly increasing in 1 and thus also in a neighborhood of 1.

Moreover, ask(π) is also strictly increasing in 1 and in a neighborhood of 1 (compare

Lemma 8.1). For CEUS0 to be greater than ask in a neighborhood of 1 it is thus sufficient,

if
∂CEUS0

∂π
(1) <

∂ask

∂π
(1). (11)

Plugging in the right hand side of Equation (10) into the left hand side of Inequality (11)

and using that α′S0
(1) = 0, we find that Inequality (11) is equivalent to

(1− δS0(1))
∂

∂π
E1[V | S0] <

∂ask

∂π
(1). (12)
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Solving for δS0(1) yields

δS0(1) >
∂
∂πE1[V | S0]− ∂ask

∂π (1)]
∂
∂πE1[V | S0]

. (13)

Now observing that

δS0(1) =
δ0

(1− δ0)(1− q) + δ0
,

∂

∂π
E1[V | S0] =

q

1− q
,

∂ask

∂π
(1) =

µ(1− q) + θ

µq + θ
,

we can solve Inequality (13) for δ0 and obtain

δ0 > 1− µ(1− q) + θ

q(µ+ 2θ)
,

which according to our initial argument is sufficient for the low signal to buy at prices in a

neighborhood of 1.

We note that if we were to drop assumption (A1), then Theorem 4.5 would hold trivially if

the low (high) signal were to buy (sell) initially given that there is no informational cascade.

For this, we would only have to exchange αS0 and αS1 in the buy and sell herding conditions.

Then, the sufficient condition for sell herding implies that αS0(π) < bid(π) ≤ bidCEU after a

sufficiently strong price drop and, thus, CEUS0(π) < bidCEU (π), which implies sell herding

on the part of the low signal. The argument for S1 is symmetric. A similar argument can

be made if the definition for herding included switches from hold to buy and sell and the

informed traders held initially.

If the second part (A2) is dropped (i.e. regularity still holds), then we require an additional

condition regarding α′S0
(1) and α′S1

(0).

Corollary 8.2. General Sufficient Condition For Herding

Consider the CEU model with varying α, where (A1) and (A3) hold and α is sufficiently

regular in π.
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Let

C :=
K1

K2
+

(1− δ0)
δ0K2

(µ+ θ)(1− 2q),

where q denotes the signal precision, µ the informed trader share and θ := (1 − µ)/3 and

K1 := µ(1− q) + θ and K2 := µq + θ.

If αS0(1) = 1 and α′S0
(1) < C, then buy herding occurs with positive probability.

If αS1(0) = 0 and α′S1
(0) < C, then sell herding occurs with positive probability.

Proof: For the buy herding case, simply note that the α′S0
(1) term does not disappear in

Inequality (12). Then, solving it for α′S0
(1) yields the condition α′S0

(1) < C. The argument

for sell herding is identical.

The boundary C implies that high primary ambiguity δ0 still contributes towards the possi-

bility of herding. The higher δ0, the less negative the second summand of C, the larger C

and the less binding the slope condition for the optimism function. If, however, α increases

too strongly in 1, i.e. α′S0
(1) ≥ K1/K2, that is, the degree of optimism is rather inelastic

with respect to changes in market sentiment for moderate prices, then no amount of primary

ambiguity will lead to herd behavior.

In that sense, herding in the CEU model requires a departure from the certainty effect

implied by propsect theory, compare e.g. Barberis and Thaler (2003). The certainty effect

implies that individuals facing risk tend to undervalue probabilities close to 1 and overvalue

probabilities close to 0. We would again appeal to the finding of Heath and Tversky (1991)

that this is not necessarily the case for probability judgments under ambiguity.

Proof of Lemma 4.6: We will focus the proof on the herding case. The arguments are

identical for the contrarian case.

Before we start the actual proof, let us state a supporting Lemma that will also help

with our subsequent comparative static analysis.

Lemma 8.3. Consider the CEU model. Let herding be possible and let wlog ∃!π∗ > π0, π
∗∗ <

π0 such that S0 engages in buy herding for π > π∗ and S1 engages in sell herding for π < π∗∗.54

54This assumption is made for convenience. The sufficient condition only implies that there exist such π
but not that they are unique. We would then have to consider the respective minimum or maximum over all
such π.
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Then Equations

π∗ =
(µq + θ)xπ0

(µq + θ)xπ0 + (µ(1− q) + θ)x(1− π0)
(14)

and

π∗∗ =
(µ(1− q) + θ)xπ0

(µ(1− q) + θ)xπ0 + (µq + θ)x(1− π0)
(15)

have unique solutions x∗ > 0 and x∗∗ > 0 respectively. Then n∗ := bx∗c + 1 defines the

minimum number of price increases the low signal has to observe before engaging in buy

herding. Similarly, n∗∗ := bx∗∗c+ 1 defines the minimum number of price decreases the low

signal has to observe before engaging in sell herding.

Proof: Uniqueness and positivity of the solutions of Equations (14) and (15) with respect

to x follow from the fact that r.h.s of Equation (14) is π0 for x = 0, goes to 1 as x → ∞
and is strictly increasing in x, while the r.h.s of Equation (15) is π0 for x = 0, goes to 0 as

x→∞ and is strictly decreasing in x. The definitions of n∗ and n∗∗ are immediately implied

by Corollary 8.13.

We note that there are no closed-form solutions for x∗ and x∗∗ in general. Moreover, we have

n∗∗ = n∗, if we assume symmetry between αS0 and αS1 in the sense of Section 4.5. Finally,

note that we can state a similar result for the contrarian case with the mere difference that

π∗ and π∗∗ need to be exchanged.

Under the symmetry assumption for αS0 and αS1 , the problem of calculating Pn∗ in Lemma

4.6 essentially reduces to a common ruin problem. To see this, note that price updating in the

CEU model (Lemma 4.2) immediately implies that the probabilities P ({π increases in t}|πt−1, V ),

P ({π decreases in t}|πt−1, V ) and P ({π remains constant in t}|πt−1, V ) remain constant as

long as πt−1 ∈ [π∗∗;π∗], where t ≥ 1 and π∗, π∗∗ are from Lemma 8.3. In particular, we have

P ({π increases in t}|πt−1, V ) = P (at = {buy} | V ) =: pb,

P ({π decreases in t}|πt−1, V ) = P (at = {sell} | V ) =: ps,

P ({π remains constant in t}|πt−1, V ) = P (at = {hold} | V ) =: ph.

(16)
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Now, we define for t ≥ 0

it+1 :=


it + 1 if π increases in t

it − 1 if π decreases in t

it if π remains constant in t

, (17)

where i0 = 0. Then π < π∗∗ is equivalent to it = −n∗ and π > π∗ is equivalent to it = n∗

under the symmetry assumption. Let πit denote the price process.

We derive the probability of an informational cascade under buy herding given that V = 0.

The case of sell herding when V = 1 is symmetric.

Let AπICB denote the event of a buy side informational cascade given that the price is

π. Then, initially, we have

P (Aπ0ICB|V = 0) =P (Aπ1ICB ∩ {i1 − i0 = 1}|V = 0)

+ P (A
π−1

ICB ∩ {i1 − i0 = −1}|V = 0)

+ P (Aπ0ICB ∩ {i1 − i0 = 0}|V = 0).

(18)

We have decomposed Aπ0ICB disjointly and then used the additivity of probability measures

for disjoint events. Now noting that the events Aπ·ICB and {i1 − i0 = −1} are independent

and incorporating Equations (16), Equation (18) becomes

P (Aπ0ICB|V = 0) =pbP (Aπ1ICB|V = 0) + psP (A
π−1

ICB|V = 0)

+ phP (Aπ0ICB|V = 0).
(19)

Denoting P (k) := P (AπkICB|V = 0) and solving (19) for k = 0, we get

(1− ph)P (0) = pbP (1) + psP (−1).

Since this holds for all integers k ∈ [−n∗+1;−n∗+1] and moreover, P (n∗) = 1 and P (−n∗) =
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0, shifting variables to j = k + n∗ yields the following system of linear equations

(1− ph)P (j) = pbP (j + 1) + psP (j − 1) ∀j = 1, . . . , 2 ∗ n∗ − 1

∧ P (0) = 0 (20)

∧ P (2n∗) = 1.

Since, on the other hand 1 = ps + pb + ph, we have that

(1− ph)P (j) = pbP (j) + psP (j).

Equations j = 1, . . . 2n∗ − 1 from Equation System (20) are, therefore, equivalent to

(P (j + 1)− P (j))
pb
ps

= (P (i)− P (i− 1)).

Let K := pb
ps

. By backwards induction starting at j = 2n∗ − 1 we then get

P (j)− P (j − 1) = K2n∗−j(P (2n∗)− P (2n∗ − 1)) (21)

for j = 1, . . . , 2n∗ − 1. Now noting that

1 = P (2n∗)− P (0) =
2n∗∑
j=0

(P (j + 1)− P (j))

=
2n∗∑
j=0

K2n∗−j(P (2n∗)− P (2n∗ − 1))

= (1− P (2n∗ − 1))

2n∗∑
j=0

Kj

= (1− P (2n∗ − 1))
1−K2n∗

1−K
,

where the last equation holds because
∑2n∗

j=0K
j is a geometric sum. Solving this for P (2n∗−1)

yields that

P (2n∗ − 1) =
K −K2n∗

1−K2n∗ .

Now noting that P (j − 1) = (P (j − 1) − P (j)) + P (j) for j = 1, . . . , 2n∗ − 1 and inserting
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Equations (21) allows us to invoke another backward induction argument to conclude that

P (j) =
Kj −K2n∗

1−K2n∗ . (22)

Setting j = n∗ in Equation (22), basic algebra to transform the fraction yields

P (n∗) = Kn∗ 1−Kn∗

1−K2n∗

= Kn∗ 1

1 +Kn∗

=
1

exp(− ln(K)n∗) + 1
.

Noting that pb = µ(1− q) + θ and ps = µq + θ if V = 0, and plugging these quantities in for

K yields the formula for Pn∗ in Equation (7).

We state an immediate consequence of Lemma 4.6.

Corollary 8.4. Under the same conditions as in Lemma 4.6, the probability of a correct

informational cascade is given by

P̃n∗ =
1

exp
(
− ln

(
µq+θ

µ(1−q)+θ

)
n∗
) . (23)

The prove is identical to the one of Lemma 4.6. It implies, in particular that Equation (22)

becomes

P̃ (j) =
K−j −K−2n∗

1−K−2n∗ (24)

for arbitrary j ∈ [0; 2n∗], where j is the number of price decreases that needs to be observed

before the correct informational cascade occurs.

Proof of Lemma 4.7: To develop an understanding for the idea of the proof note that

a parameter shift can have two effects on Pn∗ . First, it may affect P· directly. Second, it

may cause n∗ to vary. Noting that Pn∗ decreases in n∗, this has an indirect effect on the

probability of wrong herds. Changes in n∗ occur as discrete jumps. Locally, this indirect
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effect on P· is, therefore, zero. It becomes relevant only for larger parameter shifts.

We first summarize the relevant calculus in a support lemma. Note that under the

assumptions of Section 4.5, we have that askCEU = ask if the market is prone to buy herding

and buy contrarianism and that bidCEU = bid if the market is prone to sell herding and

sell contrarianism. Hence, we can rely on the analytics of ask and bid from the Avery and

Zemsky model to derive the results of Lemma 8.5.

Lemma 8.5. Consider the CEU model. Let Pn∗ be as in Equation (7). Then the following

hold

(i) ∂P·
∂µ < 0, ∂P·

∂q < 0

(ii) ∂Px
∂x < 0

(iii) ∂ask
∂µ > 0, ∂ask∂q > 0

(iv) ∂bid
∂µ < 0, ∂bid∂q < 0

(v) ∂CEUS
∂µ = 0

(vi) ∂CEUS
∂δ0

> 0 iff αS > E[V | S, π];
∂CEUS
∂δ0

< 0 iff αS > E[V | S, π]

(vii) ∂CEUS
∂q =

∂Eq [V |S,π]
∂q + δq

(
∂αq
∂q −

∂Eq [V |S,π]
∂q

)
+

∂δq
∂q (αq − Eq[V | S, π])

(viii)
∂δq
∂q > 0 if δ = δS0 and π > 0.5 or if δ = δS1 and π < 0.5.

(ix)
∂Eq [V |S0,π]

∂q < 0,
∂Eq [V |S0,π]

∂q > 0

Proof: For (i) note that

exp

(
− ln

(
µ(1− q) + θ

µq + θ

))
=

µq + θ

µ(1− q) + θ

Differentiating the r.h.s. with respect to µ and q yields quantities > 0. Applying the quotient

rule, therefore implies (i).

For (ii) note that

∂Px
∂x

=
− ln

(
µq+θ

µ(1−q)+θ

)
exp(·)

f2
.
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Noting that µq + θ > µ(1− q) + θ implies that ln(·) > 0 and, thus (ii).

For (iii) and (iv) we refer to the reader to the market microstructure literature, e.g. Glosten

and Milgrom (1985).

(v) follows from the assumption that α is independent of µ.

For (vi) note that
∂δδ0
∂δ0

=
1

f2
> 0.

The remainder follows from the definition of CEUS .

(vii) is a mere application of differentiation rules.

For (viii) note that e.g.

δS0 =
δ0

(1− δ0) [π(1− q) + q(1− π)] + δ0
.

Differentiating with respect to q yields that the sign of
∂δq
∂q is determined by−δ0(1−δ0)(1−2π),

which is greater than 0 if and only if π > 0.5. The argument is symmetric for δS1 .

Finally, (ix) follows from the literature, see e.g. Chamley (2004).

For the main proof we make the assumption that the immediate effects of q on n∗ dominate

the ancillary effects transmitted through changes in the ambiguity parameters. That is, we

assume that the increasing effect of q on the ask price and the decreasing effect of q on the

additive component of S0’s CEU belief

∂ask

∂q
− (1− δq)

∂Eq[V | S0, π]

∂q

dominate the ancillary effect that an increase in q actually increases CEUS0 due to it’s effect

on δ and α

δq
∂αq
∂q

+
∂δq
∂q

(αq − Eq[V | S0, π]) .

That is, the difference of these terms should be positive.

Similarly, the difference between

(1− δq)
∂Eq[V | S1, π]

∂q
− ∂bid

∂q
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and

δq
∂αq
∂q

+
∂δq
∂q

(Eq[V | S1, π]− αq)

should also be positive.

Then, (i)-(v) together imply that an increase in µ decreases P· and increases n∗. For the

increase in n∗ note that an increase in µ increases the ask price and decreases CEUS0 (de-

creases the bid price and increases CEUS1). The decrease in P· and the increase n∗ together

imply unambiguously that Pn∗ decreases in µ.

(i)-(iv) and (vii) in conjunction with our previously made assumptions imply the effects

of an increase in q on the probability of a wrong cascade. The assumptions are required to

ensure that q unambiguously increases n∗. Beyond that, the argument is identical to the one

of the increase of µ.

(vi) implies that an increase in δ0 causes investors to more heavily rely on their gut feel

parameter α. In the case of contrarianism this means that CEU beliefs become less elastic

to changes in π, which shifts the cut-off points towards π0 and, hence decreases n∗, which

in turn implies an increase in Pn∗ . In the case of herding CEU beliefs become more elastic,

which again shifts the cut-off points towards π0.

For the increase in α note that we define such an increase as follows: α1 is said to be

greater than α2 if and only if α1(π) < α2(π) ∀π ∈ (0;π0) and α1(π) > α2(π) ∀π ∈ (π0; 1).

Now consider some π > π0. An increase in α then implies an in increase in CEUS regardless

of the signal type. For the low signal prone to buy herding this means that the cut-off

point π∗ moves left, i.e. n∗ decreases and Pn∗ increases. For the high signal, who is prone

to contrarianism this means that π∗ moves right, i.e. n∗ increases and Pn∗ decreases. The

argument is symmetric if π < π0.

Proof of Lemma 5.3: We start by proving that Pn∗ ≤ P εWH . We can again focus on the

buy herding case given V = 0 due to symmetry. For ease of notation we assume without loss

of generality that ε = 1. The line of reasoning is identical if 0 < ε < 1.

Let it be defined as in Equation (17) and let πit be the corresponding price process.

Moreover, let ps and pb be the true buy and sell probabilities in the perturbed model given

V = 0. Note that pb and ps correspond to the respective buy and sell probabilities in the CEU

model. Finally, let p̃s and p̃b be the corresponding buy and sell probabilities as perceived by
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the market.

We note that for it ∈ [−k∗+ 1; k∗− 1], we have ps = p̃s and pb = p̃b since both informed

traders act as in the baseline model without ambiguity.

For it ∈ [k∗;n∗ − 1], we have that S0 holds and S1 buys and, thus,

pb
ps

=
µ(1− q) + θ

µq + θ
<
µ(1− q) + θ

θ
=
p̃b
p̃s
. (25)

Hence, the CEU model assumptions imply a lower probability for strong buy side accumula-

tions than in the perturbed model. This indicates that Pn∗ underestimates P εWH .

Correspondingly, for it ∈ [−n∗+1;−k∗], we have that S1 holds and S0 sells, thus yielding

pb
ps

=
µ(1− q) + θ

µq + θ
>

θ

µq + θ
=
p̃b
p̃s
. (26)

Hence, the CEU model assumptions imply a higher probability for strong sell side accumu-

lations than the perturbed model. This indicates that Pn∗ overestimates P εWH .

Now, aggregating the net underestimation and net overestimation for some it,1 ∈ [−n∗+
1;−k∗] and some it,2 ∈ [k∗;n∗ − 1] respectively, we get[

µ(1− q) + θ

µq + θ
− µ(1− q) + θ

θ

]
+

[
µ(1− q) + θ

µq + θ
− θ

µq + θ

]
= µ

θ(1− 2q)− µq(1− q)
θ(µq + θ)

< 0.

Due to symmetry we can consequently infer that for it ∈ [−n∗ + 1;n∗ − 1], Pn∗ in total

underestimates P εWH .

For it ≤ −n∗ Pn∗ underestimates P εWH in the sense that in the CEU model social

learning stops and the sell herd can never be broken to result in a buy herd after all.

For it ≥ n∗, Pn∗ overestimates P εWH in the sense that in the CEU model social learning

stops and the buy herd can never be broken to result in a sell herd after all.

Since, however, for it ≥ n∗, we have that

p̃s
p̃b

=
θ

µq + θ
, (27)

and for it ≤ −n∗, we have
p̃b
p̃s

=
θ

µq + θ
, (28)
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we conclude that the probability to observe a sell herd given that there is currently buy

herding is exactly equal to the probability to observe a buy herd given that there is currently

sell herding. Hence, the associated over- and underestimation of Pn∗ versus P εWH cancel out.

In total Pn∗ is, thus, a lower boundary for P εWH .

We move to show that Pk∗ ≥ P εWH . For this to see, note that as above the probability

of it becoming ≥ |k∗| in the CEU model and the perturbed CEU model is the same. Again,

we focus on the buy herding case, where V = 0 and when ε = 1 without loss of generality.

In the perturbed model, the probability of observing a price reversal given that it ≥ k∗ is

relatively higher than the probability of observing a price reversal into the opposite direction

given that it ≤ −k∗. Note that if it ≥ k∗, then p̃s
p̃b

= θ
µ(1−q)+θ . Similarly, if it ≤ −k∗, then

p̃b
p̃s

= θ
µq+θ . Observing that the second ratio is smaller than the first one, this confirms our

claim.

Now, invoking a similar symmetry argument as in the lower boundary case, we conclude that

Pk∗ is, indeed an upper boundary of P εWH .

If k∗ = n∗, then PNCKWH = Pn∗ . This implies in particular that probabilities of wrong herds

and wrong learning coincide if there is no bid-ask spread.

8.C Formal Results for the Perturbed Model

The perturbed CEU model is described by the following two Propositions.

Proposition 8.6. Equilibrium Prices in the Perturbed CEU Model

For any time t, let bidt and askt be the bid and ask prices that are quoted in the Avery and

Zemsky model. Let πt be the public belief in the perturbed CEU model. Moreover, let

bidεt :=
(µ(1− q)ε+ θ)πt

(µ(1− q)ε+ θ)πt + (µqε+ θ)(1− πt)
,

bid1−εt :=
(µ(q(1− ε) + (1− q)) + θ)πt

(µ(q(1− ε) + (1− q)) + θ)πt + (µ((1− q)(1− ε) + q) + θ)(1− πt)
,

askεt :=
(µqε+ θ)πt

(µqε+ θ)πt + (µ(1− q)ε+ θ)(1− πt)
,

ask1−εt :=
(µ(q + (1− q)(1− ε)) + θ)πt

(µ(q + (1− q)(1− ε)) + θ)πt + (µ((1− q) + q(1− ε)) + θ)(1− πt)
.
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Then, the market maker quotes the following bid and ask prices

bidε−CEUt =


min{bidεt;CEUS0(πt)}, if CEUS0(πt) ≥ bidt

bidt, if CEUS0(πt) < bidt ∧ CEUS1(πt) ≥ bidt

bid1−εt , if CEUS0(πt) < bidt ∧ CEUS1(πt) < bidt

and

askε−CEUt =


max{askεt ;CEUS1

(πt)}, if CEUS1
(πt) ≤ askt

askt, if CEUS1
(πt) > askt ∧ CEUS0

(πt) ≤ askt

ask1−εt , if CEUS1
(πt) > askt ∧ CEUS0

(πt) > askt.

Proof: The proof is essentially a repeated application of Bayes’ rule and game theoretic ar-

guments as in the proof of Lemma 4.1. We outline the proof for bidε−CEUt when CEUS0(πt) ≥
bidt. The arguments for the other cases are similar.

First note that by monotonicity of the informed traders asset valuation, i.e. CEUS0(πt) <

CEUS1(πt), the high signal does not sell if the low signal does not sell. Consequently, by

Bayes’ rule the bid price under the zero-profit condition for the market maker is

bidε−CEUt =
P̃ (at = {sell}|Ht, V = 1)P (V = 1|Ht)

P̃ (at = {sell}|Ht)
= bidεt,

since P (V = 1|Ht) = πt, P̃ (at = {sell}|Ht, V = 1) = µ(1− q)ε+ θ and P̃ (at = {sell}|Ht) =

(µ(1 − q)ε + θ)πt + (µqε + θ)(1 − πt). Thus, noting that bidεt > bidt, we have to distinguish

between the case where CEUS0(πt) < bidεt and where CEUS0(πt) ≥ bidεt.
If CEUS0(πt) < bidεt, then quoting bidε−CEUt = bidεt would cause the low signal to sell

at πt. Yet, if S0 sells, the market maker makes zero-profit only when quoting bidt < bidεt.

Hence, he makes an average loss on every sell he fills of bidt− bidεt, causing him to eventually

go out of business. As long as the market maker quotes bidε−CEUt > CEUS0(πt) and S0 sells

at πt a similar argument applies.

Consequently, it must be that bidε−CEUt ≤ CEUS0(πt) to ensure that S0 holds. When

quoting bidε−CEUt < CEUS0(πt), then the market maker makes an expected profit of bidεt −
bidε−CEUt . His Bertrand competition can then quote a more competitive bid price, b̃id, where

bidε−CEUt < b̃id < CEUS0(πt).

By this the competition draws away all noise traders from the market maker, making a
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slightly smaller but still positive expected profit bidεt − b̃id on every sell they fill.

The market maker’s best response to b̃id would then be a similar increase in the quoted

bid price. This price war continues until

bidε−CEUt = b̃id = CEUS0(πt).

Hence, for CEUS0(πt) < bidεt, bid
ε−CEU
t = CEUS0(πt) is the equilibrium bid price.

If CEUS0(πt) ≥ bidεt, then the market maker quotes bidε−CEUt = bidεt according to the

zero profit condition. Hence,

bidε−CEUt = min{bidεt;CEUS0(πt)},

if the low signal stops selling.

Key thing to note here is that askε−CEUt = askt (bidε−CEUt = bidt) as long S1 buys (S0) sells.

As a consequence, the analytics of a switch from selling to buying and vice versa are the same

as in the unperturbed CEU model. This, in turn implies that Theorems 4.3, 4.4 and 4.5 also

hold in the perturbed model.

Moreover, since bidεt < ask1−εt (bid1−εt < askεt), there is a positive bid-ask spread even if

all informed traders take the same action. This is because the market (maker) believes there

is a share of ε SEU traders in the market. Hence, there is no complete informational cascade

in the perturbed CEU model since the market still infers information from the trades and

updates prices accordingly. This is formalized in

Proposition 8.7. Public Belief Updating in the perturbed CEU Model

Under the assumptions and with the notation of Proposition 8.6, let

h1t :=
(µ(1− q)(1− ε) + θ)πt

(µ(1− q)(1− ε) + θ)πt + (µq(1− ε) + θ)(1− πt)
,

h2t :=
(µq(1− ε) + θ)πt

(µq(1− ε) + θ)πt + (µ(1− q)(1− ε) + θ)(1− πt)
.

Then:

(1) If the high CEU-signal buys and the low CEU-signal sells at time t, then πt+1 is as in
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the model of Avery and Zemsky, see Equation (39).

(2) If the high CEU-signal buys and the low signal holds at time t, then

πt+1 =


askt, if at = {buy}

bidεt, if at = {sell}

h1t , if at = {hold}.

(29)

(3) If the high CEU-signal holds and the low CEU-signal sells at time t, then

πt+1 =


askεt , if at = {buy}

bidt, if at = {sell}

h2t , if at = {hold}.

(30)

(4) If both CEU-signals buy at time t, then

πt+1 =


ask1−εt , if at = {buy}

bidεt, if at = {sell}

πt, if at = {hold}.

(31)

(5) If both CEU-signals sell at time t, then

πt+1 =


askεt , if at = {buy}

bid1−εt , if at = {sell}

πt, if at = {hold}.

(32)

Proof: The proof is similar to the one of Lemma 4.2. For the sake of completeness let us

consider case (4), which corresponds e.g. to a buy herding regime.

By Bayes’ rule the updated prior belief after action at is observed is given by

πt+1 = P [V = 1|Ht+1] =
P̃ (at|Ht, V = 1)P (V = 1|Ht)

P̃ (at|Ht)
.

When choosing at = {buy} and at = {sell}, then the updating rule for πt+1 after an observed
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buy and sell immediately follow from Proposition 8.6. That the price remains stable after

a hold can also be inferred from the above formula. Intuitively, it reflects that the market

considers a hold to be conducted by a noise trader for sure. All informed traders that are

considered to be present on the market either buy (high signal S1 or CEU preferences) or sell

(low signal S0 with SEU preferences) the asset. As a consequence, a hold bears no informa-

tional value.
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To prove Propositions 5.1 and 5.2 in the main part, we need the following support propositions

Proposition 8.8. In the perturbed CEU model, let π∗ < π0 (π∗∗ > π0) be the cut-off prices,

such that S1 sell herds for all π < π∗ (S0 buy herds for all π > π∗∗).

Then πBHt := (πt|πt > π∗∗) is a sub-martingale with respect to Ht and πSHt := (πt|πt < π∗)

is a super-martingale with respect to Ht.

Proof: We only show that πBHt is a sub-martingale. The proof is symmetric for πSHt . To show

that πBHt is a sub-martingale with respect to Ht, we need to prove that E[πBHt+1 | Ht] ≥ πBHt .

Since πBHt+1 is bounded by definition other martingale properties follow immediately.

Note that showing E[πBHt+1 | Ht] ≥ πBHt is equivalent to showing

E[πt+1 | Ht, πt > π∗∗] ≥ πt.

Let pb := P [at = {buy}|Ht, πt > π∗∗], ps := P [at = {sell}|Ht, πt > π∗∗] and ph := P [at =

{hold}|Ht, πt > π∗∗] be the actual probabilities to observe a buy, sell and hold respectively

given that S0 buy herds. Then from Case (4) of Proposition 8.7, we infer that

E[πt+1 | Ht, πt > π∗∗] = pbask
1−ε
t + psbid

ε + phπt. (33)

Now define

p̃b := (µ(q + (1− q)(1− ε) + θ)πt + (µ((1− q) + q(1− ε) + θ)(1− πt)

and

p̃s := (µ(1− q)ε+ θ)πt + (µqε+ θ)(1− πt)

to be the unconditional probabilities of a buy and sell respectively as perceived by market

participants. Observe that ph = θ and that pb = p̃b + x and ps = p̃s − x, where x =

εµ((1− q)πt + (1− πt)q).
Moreover, we set

p̃1b := µ(q + (1− q)(1− ε) + θ

and

p̃1s := µ(1− q)ε+ θ

to be the corresponding buy and sell probabilities conditional on V = 1.
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In line with Proposition 8.6, we can then rewrite the r.h.s. of Equation (33) so that we have

E[πt+1 | Ht, πt > π∗∗] = pb
p̃1b
p̃b
πt +

p̃1s
p̃s
πt + phπt

=

(
(p̃b + x)

p̃1b
p̃b

+ (p̃s − x)
p̃1s
p̃s

+ θ

)
πt

=

(
p̃1b + p̃1s + θ + x

(
p̃1b
p̃b
− p̃1s
p̃s

))
πt

=

(
1 + x

(
p̃1b
p̃b
− p̃1s
p̃s

))
πt,

where for the last step observe that p̃1b = µq + µ(1 − q)(1 − ε) + θ and p̃1s = µ(1 − q)ε + θ

and, thus, p̃1b + p̃2s = µ+ 2θ. Since moreover µ+ 3θ = 1 by definition the last equality holds.

Based on this, however, showing E[πt+1 | Ht, πt > π∗∗] ≥ πt is equivalent to showing that

p̃1b p̃s− p̃1sp̃b > 0. Noting that p̃s = θ+x and that p̃b = µ+θ−x and plugging in the respective

formulae, basic manipulations of the l.h.s. of the last inequality yield

p̃1b p̃s − p̃1sp̃b

= µx− µ2ε(1− q) + 2θx− 2µε(1− q)θ

= µ2ε [(1 + 2θε)((1− q)πt + (1− πt)q − (1− q))]

= µ2ε [(1 + 2θε)(1− πt)(2q − 1)] > 0,

since q > 0.5, which concludes the proof.

Proposition 8.9. In the perturbed CEU model, let π∗ < π0 (π∗∗ > π0) be the cut-off prices,

such that S0 is a buy contrarian for all π < π∗ (S1 is a sell contrarian for all π > π∗∗).

Then πSHt := (πt|πt > π∗∗) is a super-martingale with respect to Ht and πSHt := (πt|πt < π∗)

is a sub-martingale with respect to Ht.

Proof: The proof is point-symmetric to the one for Proposition 8.8.
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8.D Discussion of a Purely Optimistic Market in the CEU Model

We limit our attention to the purely optimistic case since the purely pessimistic case is sym-

metric. The subsequent analysis holds in the CEU model as well as in the perturbed CEU

model, yet we state formal results only for the CEU model.

We start by noting that in a purely optimistic market, the high signal always buys. Since

1 = α > Eπt [V | S1, Ht] for all πt ∈ (0; 1), it follows that CEUS1(πt) > Eπt [V | S1] > ask(πt)

for all πt ∈ (0; 1).

For the low signal, one of three cases is possible depending on the primary ambiguity

δ0. If δ0 > δ∗, i.e. if it is high enough, then the purely optimistic low signal always buys, too.

If δ0 < δ∗∗, i.e. if it is low enough, then S0 essentially behaves as in the case where α ∈ (0; 1).

If δ0 is between the two cut-off points, then S0 will buy at low prices but eventually switch

into holding as πt approaches 1.

Lemma 8.10. In the CEU model with α = 1 and δ0 > 0, the high signal always buys. For

the low signal: ∃δ∗, δ∗∗ ∈ (0; 1) with δ∗ > δ∗∗, such that

• S0 always buys if and only if δ0 > δ∗,

• ∃π∗ < 1 such that S0 sells ∀πt ∈ (π∗; 1) if and only if δ0 < δ∗∗,

• ∃π∗∗ < 1 such that S0 holds ∀πt ∈ (π∗∗; 1) if and only if δ∗ ≥ δ0 ≥ δ∗∗,

where δ∗ =
−K1+

√
K2

1+4K2

2 and δ∗∗ =
−K3+

√
K2

3+4K4

2 with

K1 =
2(1− q) (µ(1− q) + θ)− q(µq + θ)

(µq + θ) + q (µ(1− q) + θ)

K2 =
(1− q) [q(µq + θ)− (1− q) (µ(1− q) + θ)]

q [(µq + θ) + q (µ(1− q) + θ)]

K3 =
2(1− q)(µq + θ)− q (µ(1− q) + θ)

(µ(1− q) + θ) + q(µq + θ)

K4 =
(1− q) [q (µ(1− q) + θ)− (1− q)(µq + θ)]

q [(µ(1− q) + θ) + q(µq + θ)]

Proof: For S1, there is nothing left to show.

For S0, note that by a calculus argument similar to the ones used in the proof of Theorem
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4.5, we have that S0 always buys if and only if

∂CEUS0

∂πt
(1) <

∂ask

∂πt
(1).

To see that this inequality holds if and only if δ0 > δ∗, plug in the respective formulas to

obtain a quadratic inequality of the form δ20 +K1δ −K2 > 0. Observe that the l.h.s. of this

inequality has two roots one which is < 0. Consequently, for this inequality to hold, δ0 must

be greater than the larger root, which is given by δ∗.

Observe again that the calculus arguments from the proof of Theorem 4.3 yield that S0 sells

the asset when the price is in a neighborhood of 1 if and only if

∂CEUS0

∂πt
(1) >

∂ask

∂πt
(1).

As before, this inequality holds if and only if δ20 + K3δ −K4 < 0. A similar argument as in

the previous case yields that for δ0 > 0, this holds if and only if δ0 < δ∗∗.

With both cut-off points given, it follows immediately that S0 holds in a neighborhood of 1

(but never buys) if and only if δ∗ ≥ δ0 ≥ δ∗∗.

Figure 8 illustrates the trade behavior of the CEU traders if they are purely optimistic. In

Figure 8 (a), the low signal always buys. Indeed, the primary ambiguity level δ0 = 0.5 is

above the cut-off point δ∗ = 0.47 from Lemma 8.10. Since S1 always buys as well, there is

no social learning in a purely optimistic market. The market by default is in the state of an

informational cascade.

In the perturbed model, the informed traders would drive the asset price towards α = 1,

regardless of the initial prior and independently of the true value of V .

This is the paragon of irrational exuberance driving the asset price away from it’s

fundamental value. Observe, however, that this is not a case of investor herding in the

sense of Definition 3.1. While informed traders accumulate on the buy side of the market,

they never change their initial trading decision. The herd-like behavior exhibited by the

informed traders is due only to the high degree of perceived ambiguity in conjunction with

the fundamentally unrelated pure optimism.

In Figure 8 (b), the low signal sells if πt > π2 and buys only if πt < π1 due to a low

degree of primary ambiguity. Indeed, her additive belief component dominates, making her
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(a) High primary ambiguity δ0 = 0.5

(b) Low primary ambiguity δ0 = 0.1

Figure 8: Low signal trading decisions in case of pure optimism

Notes: Low signal CEU beliefs as well as bid and ask prices with respect to πt for high and low primary
ambiguity δ0. The degree of optimism is α = 1, the informed trader share is µ = 0.3 and the signal precision
q = 0.7. The cut-off points according to Lemma 8.10 are δ∗ = 0.47 and δ∗∗ = 0.22.

act as though in the baseline model if prices are high. This case is covered by Theorem 4.3.

Once the price drops below π1 a buy contrarian cascade occurs. This happens with positive

probability even if V = 1. So even a purely optimistic market does not necessarily become

confident regarding V = 1. Contrary to the case where α < 1, there is, however, at least the

possibility that the market confidently learns about V = 1, since high signal traders always

buy.

In the perturbed model, there is no informational cascade. If V = 0 is the true state,

the majority of low signals in the market will prevent the price from remaining above π2 for

extended periods of time. If the price is below π2 or even below π1, however, the likelihood

of observing a price increase is greater than that of a further price decrease. Hence, we would

assume, the price to always revert towards π2. If V = 1, the market will confidently learn
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about the correct true state, as the majority of the high signals eventually pushes the price

arbitrarily close to 1.

8.E Collection of Additional Results from Avery and Zemsky

For the reader’s convenience we have collected relevant formulas for the Avery and Zemsky

(1998) model in the following.

Lemma 8.11. Formulas of the Avery and Zemsky Framework

In the Avery and Zemsky (1998) framework with initial prior π0, informed trader share µ,

symmetric binary signals P [S|V ] with signal precision q and noise traders that buy, sell or

hold with equal probability θ, the following equations hold.

(i) Buy and sell probabilities conditional on V :

P (at = {buy}|V = 0) = P (at = {sell}|V = 1) = µ(1− q) + θ

P (at = {sell}|V = 0) = P (at = {buy}|V = 1) = µq + θ
(34)

(ii) Ask price in t:

askt =
(µq + θ)πt

(µq + θ)πt + (µ(1− q) + θ)(1− πt)
(35)

(iii) Bid price in t:

bidt =
(µ(1− q) + θ)πt

(µ(1− q) + θ)πt + (µq + θ)(1− πt)
(36)

(iv) Expected value asset valuation by low signal in t:

E[V | S0, Ht] =
(1− q)πt

(1− q)πt + q(1− πt)
(37)

(v) Expected value asset valuation by high signal in t:

E[V | S1, Ht] =
qπt

qπt + (1− q)(1− πt)
(38)
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(vi) Price updating after observing trade action in t:

πt+1 =


askt, if at = {buy}

bidt, if at = {sell}

πt, if at = {hold}

(39)

The proofs can be found in Avery and Zemsky (1998).

In addition, we provide some interesting properties of the public belief πt in the Avery and

Zemsky model. The following proposition shows that the public belief can be uniquely iden-

tified with any order imbalance in the trade history Ht.

Proposition 8.12. Public Belief And Order Imbalance

Let (µ, q, π0) be some model parameterization of the Avery and Zemsky (1998) and let noise

traders buy, sell or hold with equal probability θ. Moreover, let Ht be some trade history

containing b buys, s sells and h holds, where z := b−s denotes the trade imbalance. Then, πt

does not depend on the order at which traders arrive at the market if b, s, h remain unchanged.

In particular, πt only depends on the model parameters and z.

Before we provide the proof we would like to state a few implications of Proposition 8.12.

Indeed, it suggests that we can view πt as a measure for general market sentiment. The

larger πt, the larger the buy side accumulation of traders, the more optimistic the market as

a whole and vice versa.

Based on Proposition 8.12, we can also derive the following formula for πt based on model

parameters µ, q and π0 as well as the order imbalance z.

Corollary 8.13. With the same notation as in Proposition 8.12, we have

πt(z) =


(µq+θ)zπ0

(µq+θ)zπ0+(µ(1−q)+θ)z(1−π0) , if z > 0

(µ(1−q)+θ)−zπ0
(µ(1−q)+θ)−zπ0+(µq+θ)−z(1−π0) , if z < 0

π0, if z = 0

(40)

Proof of Proposition 8.12 and Corollary 8.13 To prove Proposition 8.12, we first show

the following
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Lemma 8.14. In the Avery and Zemsky (1998) framework with prior probability π0, at any

time τ ∈ [1;T ], we have

πt = P (V = 1|Ht) =

∏τ
t=1 P (at|V = 1)π0∏τ

t=1 P (at|V = 1)π0 +
∏τ
t=1 P (at|V = 0)(1− π0)

(41)

Proof: We show this via induction over τ . Let τ = 1. Using Equation (39), Bayes’ rule and

the law of total probability readily imply that

π1 = P (V = 1|H1) =
P (a1|V = 1)π0

P (a1|V = 1)π0 + P (a1|V = 0)(1− π0)
.

Now let us assume that the statement from Lemma 8.14 is true for any τ ≥ 1, then as for

τ = 1, we get

πτ+1 =
P (aτ+1|V = 1)πτ

P (aτ+1|V = 1)πτ + P (aτ+1|V = 0)(1− πτ )
.

Now using the induction assumption, we can plug in the r.h.s. of Equation (41) for πτ and

get:

πτ+1 =
P (aτ+1|V = 1)

∏τ
t=1 P (at|V = 1)π0
C

,

where

C :=P (aτ+1|V = 1)
τ∏
t=1

P (at|V = 1)π0

+ P (aτ+1|V = 0)
τ∏
t=1

P (at|V = 0)(1− π0).

As we absorb the terms P (aτ+1|·) into the respective products, we have shown that Equation

(41) holds for τ + 1, which concludes the proof.

Now continuing the proof of Proposition 8.12, we consider any history Ht of length ≥ 2 (if

Ht contains less than two actions, then there is nothing to show). Now let σ(Ht) denote an

arbitrary permutation of actions contained in Ht, then σ(Ht) =: H̃t defines a second history

with equal length as well as equal number of buys, sells and holds as Ht. Applying Equation

41, we see that P (V = 1|Ht) and P (V = 1|H̃t) are identical up to a commutation within the

product terms
∏

(·). Consequently, we have P (V = 1|Ht) = P (V |H̃t), which prooves that πt

does not depend on the order of arrival of traders as long as their trading decisions remain

unchanged.
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For the second part of Proposition 8.12 assume that history Ht contains b buys s sells and

h holds. Let us assume without loss of generality that b ≥ s. Moreover, for notational

convenience, let us denote pB· = P (at = {buy}|V = ·), pS· = P (at = {sell}|V = ·) and

pH· = P (at = {buy}|V = ·) for the remainder of the proof. Since the order of the actions is

not important, we can rewrite Equation (41) as

πt = P (V = 1|Ht) =
(pB1 )b(pS1 )s(pH1 )hπ0

(pB1 )b(pS1 )s(pH1 )hπ0 + (pB0 )b(pS0 )s(pH0 )h(1− π0)
.

Now noting that pS0 = pB1 and vice versa and that pH0 = pH1 , we can factorize the denominator

so that we get

πt = P (V = 1|Ht) =
(pB1 )b(pS1 )s(pH1 )hπ0

(pB1 )s(pS1 )s(pH1 )h[(pB1 )b−sπ0 + (pB0 )b−s(1− π0)]
.

Setting b− s = z and reducing the fraction, we get

πt = P (V = 1|Ht) =
(pB1 )zπ0

(pB1 )zπ0 + (pB0 )z(1− π0)
. (42)

For s > b, symmetry implies that we can simply replace the buy probabilities in Equation (42)

with the corresponding sell probabilities, which concludes the proof that πt only depends on

z and the model parameters. To see that Corollary 8.13 holds, use the formulas for P (at|V )

according to Lemma 8.11.

8.F Informational Cascades

Proposition 8.15. In the two-state, two-trader version of the Avery and Zemsky (1998)

framework, an informational cascade occurs if and only if all informed traders take the same

action.

The “if” part of the result generalizes to any number and even to a continuum of states and

different informed traders as long as all model parameters are common knowledge and the

conditional signal distribution P (S|V ) is not constant in V . In general settings, e.g. con-

founded learning, informational cascades may occur if agents take different actions, compare

Exercise 4.6 in Chamley (2004).

Proof:
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“⇐”: Let us assume all informed traders take the same action at t. Let this action without

loss of generality be a buy. Then:

P (at = buy|Ht, “trade is informed”)

=P (S = S0|Ht) + P (S = S1|Ht) = 1
(43)

and

P (at = buy|Ht, V, “trade is informed”)

=P (S = S0|Ht, V ) + P (S = S1|Ht, V ) = 1
(44)

as well. We also note that the corresponding conditional probabilities for any informed trader

action other than a buy are zero. Hence, we get

P (at = buy|Ht, V )

= P (“informed buy”|Ht, V ) + P (“uninformed buy”|Ht, V )

= P (at = buy|Ht, V, “trade is informed”)P (“trade is informed”|Ht, V )

+P (“uninformed buy”|Ht, V ).

Now noting that the probability µ that a trade is informed and the probability θ that an

uninformed trader buys do not depend on the state of the world and applying equations (43)

and (44), we get

P (at = buy|Ht, V )

= P (at = buy|Ht, “trade is informed”)P (“trade is informed”|Ht)

+P (“uninformed buy”|Ht)

= P (at = buy|Ht).

For any action other than buy, we have that P (at|Ht, V ) = θ = P (at|Ht) and, therefore, the

probability is independent of the state of the world, which concludes this part of the proof.

We note that common knowledge is crucial to the proof since Equations (43) and (44) would

not necessarily hold if the informed traders’ actions were obscured by some unobservable

preference parameters.
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“⇒”: We proof this indirectly by assuming that without loss of generality the low signal

sells at t while the high signal buys. Then:

P (at = buy|Ht, “trade is informed”)

=P (S = S1|Ht) = πtq + (1− πt)(1− q)
(45)

and

P (at = buy|Ht, V, “trade is informed”) = P (S = S1|Ht, V )

=

πtq, V = V1

(1− πt)(1− q) V = V0

.
(46)

We infer from equations 45 and 46 that

P (at = buy|Ht, “trade is informed”) 6= P (at = buy|Ht, V, “trade is informed”),

which readily implies that P (at = buy|Ht, V ) 6= P (at = buy|Ht) and, therefore, concludes

the second part of the proof.

8.G CEU and NEO-Additivity Toolbox

This section is a summary of the most important concepts and results of Chateauneuf et al.

(2007) and Eichberger et al. (2010). It is the mathematical foundation for Section 3.

Capacities and Choquet Expected Utility (CEU): Let S ⊂ R denote a non-empty set

of possible states of the world. Let σ(S) =: E denote the corresponding Borel Sigma-Algebra

of all possible subsets of S. Note that by definition ∀s ∈ S : {s} ∈ E .

Definition 8.16. Capacity

A capacity is a mapping ν : E → [0; 1] that assigns likelihood values to events in a way that

it fulfills the following properties:

(i) Monotonicity: ∀E,F ∈ E, where E ⊆ F : ν(E) ≤ ν(F )
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(ii) Normalization: ν(∅) = 0 and ν(S) = 1.

We note that a capacity defines a normalized measure. A special case of capacities are

probability measures. Yet, capacities in general are not additive with respect to E . This

non-additivity implies in particular that for some event E, where 0 < ν(E) < 1, we do not

necessarily have that ν(E) = 1− ν(EC), where EC denotes the complement of E. Therefore,

capacities are suited to model agent behavior under ambiguity.

Capacities are designed to explain the Ellsberg paradox of Ellsberg (1961). In Ellsberg’s

experiment individuals are confronted with the choice of drawing a ball from one of two urns.

They know that the first urn contains 50 white balls and 50 black balls while the composition

of the second urn is unknown. Subjects win money, if they draw a white ball. Most partic-

ipants choose to draw from urn 1, where the composition is known. This implies that they

assign a probability of less than 50% of drawing a white ball from urn 2. Now, Savage’s sure

thing principle would predict that when the winning condition is changed to drawing a black

ball, subjects should prefer urn 2 to urn 1. A corresponding repetition of the experiment

shows, however, that subjects still tend to prefer urn 1 to urn 2, thus, violating Savage’s SEU

framework.

Next we define the Choquet integral with respect to capacities for a set of simple functions:

Definition 8.17. Choquet Integral

Let f : S → B ⊂ R, where B has a finite number of elements. The Choquet integral with

respect to the capacity ν is defined as∫
f dν :=

∑
t∈f(S)

t · [ν({s | f(s) ≥ t})− ν({s | f(s) > t})].55

The Choquet integral is interpreted as the expected value under ambiguity. If we think of f

being a utility function, it is natural to denote CEU :=
∫
f dν as the Choquet Expeted Utility

of an individual that perceives ambiguity and has ambiguity preferences that are captured

by ν.

55Note that the term ν({s | f(s) ≥ t}) − ν({s | f(s) > t}) very much reminds us of decision weights
from prospect theory according to Tversky and Kahneman (1992). Yet, while probability weightings are
merely distortions of objective probabilities designed to capture individuals’ tendencies to wrongly assess
given probabilities, capacities model how individuals assign likelihoods to outcomes, for which no (single)
probability is available.
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NEO-Additive Capacities: We provide a simplified definition for neo-additive capacities

that is sufficient for this study.

Definition 8.18. NEO-Additive Capacity

Let π be a probability measure on (S, E) and let

ηα =


0 E = ∅

α E 6= ∅ ∧ E 6= S

1 E = S

be the Hurwicz capacity and let δ, α ∈ [0; 1], then a neo-additive capacity ν(· | π, δ, α) is

defined as

ν(E | π, δ, α) := (1− δ)π(E) + δηα(E).

The CEU with respect to a neo-additive capacity is shown by Chateauneuf et al. (2007) to

be

CEUneo[f ] = (1− δ)Eπ[f ] + δ(α ·max
x∈B
{f−1(x)}

+(1− α) ·min
x∈B
{f−1(x)}).

(47)

The function f again is a simple function in the sense of Definition 8.17. When assuming

that informed traders have neo-additive CEU preferences in the Avery and Zemsky (1998)

framework, f is the identity as we maintain the assumption of risk neutrality. Since there are

only two states V0 = 0 and V1 = 1, the non-additive part simplifies to δ(α·1+(1−α)·0) = δα.

The parameter δ describes the degree of perceived ambiguity, while the parameter α measures

the attitude towards ambiguity.

The absolute ambiguity attitude in the sense Ghirardato and Marinacci (2002) for individuals

with neo-additive CEU preferences is then given by the following

Proposition 8.19. Absolute Ambiguity Attitude

Let �neo denote a preference relation that can be represented by a neo-additive capacity ν(E |
π, δ, α). Then, �neo is ambiguity averse (loving) in the sense of Ghirardato and Marinacci

(2002) if and only if α < (>)Eπ[·]. It is ambiguity neutral if and only if α = Eπ[·].

Proof: According to Proposition 15 in Ghirardato and Marinacci (2002), a preference re-
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lation is ambiguity neutral if and only if it is SEU. In the case of neo-additive capacities

this would mean that CEUneo = Eπ. Now, let us assume that without loss of generality

utilities are normalized (or canonical), that is, max{u−1(x)} from Equation (47) equals 1 and

min{u−1(x)} = 0. Now solving Equation (47) for α, we get α = Eπ. Hence, neo-additive

preferences are ambiguity neutral if and only if α = Eπ.

If α̃ > Eπ, it follows that CEU α̃neo > CEUαneo. This, in turn, implies that CEUαneo is more

ambiguity averse than CEU α̃neo according to Definition 4 in Ghirardato and Marinacci (2002).

Since we have already shown that CEUαneo is SEU, Definition 9 in Ghirardato and Marinacci

(2002) implies that CEU α̃neo ambiguity loving. The argument for absolute ambiguity aversion

is symmetric.

General Bayesian Updating (GBU) Rule: The following GBU rule for neo-additive

capacities is derived and discussed by Eichberger et al. (2010).

Proposition 8.20. General Bayesian Updating

Let E ⊆ S be some conditioning event and let ν(· | π, δ, α) be an unconditional neo-additive

capacity. Let π(E) > 0. Then:

• The capacity νE(· | π, δ, α) that is conditioned on E is neo-additive as well;

• The additive probability π is updated to πE according to Bayes’ rule, i.e. πE(A) =

π(A ∩ E)/π(E) for A ∈ E;

• αE = α;

• δE = δ
(1−δ)π(E)+δ .

8.H Inconsistencies of GBU in the CEU Model

An important reason why α should vary with π is that it allows consistent assumptions

regarding asymptotic ambiguity attitudes as the market becomes confident about either state.

If α ∈ (0; 1) is constant, then for both informed trader types

αrelt =
α

Eπt [V | Ht, S]
→ α < 1, as πt → 1 (48)
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and

αrelt =
α

Eπt [V | Ht, S]
→∞, as πt → 0. (49)

In other words, informed traders become pessimistic as the market becomes confident about

the high state. Similarly, traders become absolute optimistic as the market becomes confident

about the low state. Hence, a fixed α in the CEU model does not guarantee that the informed

traders’ preference for ambiguity is invariant. Indeed, if an informed trader is optimistic at

t = 0 and the market confidently learns that the high state is true, the informed trader will

eventually become pessimistic. Yet, why of all times, would traders become pessimistic, when

the market expresses strong or even full confidence about the high state and vice versa? If

the market gets confident about either state of the world, risk becomes vanishingly small.

In the limiting case that π ∈ {0; 1}, there is no uncertainty, Knightian or otherwise. Hence,

CEU-investors should value the asset at 0 or 1 respectively just like their SEU counterparts

from the baseline model. This is guaranteed if α(0) = 0 and α(1) = 1.

One might argue that there should, indeed, be no perceived ambiguity in the case of full

confidence. That is, the degree of perceived ambiguity δ should go → 0 as πt → {0; 1}. We

would agree that such an assumption would be feasible as well but it would be an altogether

different model. The way we understand ambiguity in this paper is that it cannot be learned

away. The level of primary ambiguity δ0, for instance, is associated with the complexity of the

financial product or the level of expertise of the trader. Therefore, it does not vanish, even if

the market becomes confident about the true state of V . Moreover, the ambiguity stemming

from the informed trader’s private information is highest when it contrasts to the view of

the market, see Figure 2. For a low signal, the perceived informational ambiguity is, indeed,

highest if the market confidently believes that V = 1. Hence, there is ambiguity if the market

is confident, but it’s effect on the informed traders’ decision making should become marginal.

If we assume regularity of α in π, this also implies that neo-additive Choquet preferences

in the CEU model are consistent with smooth ambiguity preferences in the Klibanoff et al.

(2005) approach.
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