
Granger Causality and Regime Inference in
Bayesian Markov-Switching VARsI

Matthieu Droumaguetb, Anders Warnea, Tomasz Woźniakc,b
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Abstract

Recent economic developments have shown the importance of spillover and contagion effects in financial
markets as well as in macroeconomic reality. Such effects should potentially be modeled and analyzed taking
into account such properties of time series as changes of parameter values over time and heteroskedas-
ticity. We derive restrictions for Granger noncausality within the framework of Markov-switching Vector
Autoregressive Models. Due to the complicated structure and the nonlinearity of the resulting restrictions,
classical tests have limited use. We, therefore, choose a Bayesian approach to evaluate the hypotheses of
noncausality. The inference consists of a novel Block Metropolis-Hastings sampling algorithm for esti-
mation of the restricted models, and of standard methods of computing the Posterior Odds Ratio. As an
empirical illustration we analyze the system of the US money and income variables. We found that while
the the past information about the money aggregate M1 is dispensable for the forecasting of the conditional
mean of income, it crucial for predicting the next period’s state of the economy.
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1. Introduction

The concept of Granger causality was introduced by Granger (1969) and Sims (1972). One variable does not
Granger-cause some other variable, if past and current information about the former cannot improve the
forecast of the latter. Knowledge of Granger causal relations allows a researcher to formulate an appropriate
model and obtain a good forecast of values of interest. But what is even more important, a Granger causal
relation, once established, informs us that past observations of one variable have a significant effect on the
forecast value of the other, delivering crucial information about the relations between economic variables.

Note that this concept refers to the forecasting of variables, in contrast to the causality concept based on
ceteris paribus effects attributed to Rubin (1974) (for the comparison of the two concepts used in econometrics,
see e.g. Lechner, 2011). We also underline that in general Granger causality does not relate to any causal
relation implied by structural economic theories either. Such correspondence has only been shown for
linear Gaussian models by White & Lu (2010).
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Among the parametric time series models that have been analyzed for Granger causality of different
types are: a family of Vector Autoregressive Moving Average (VARMA) models (see Boudjellaba, Dufour
& Roy, 1994, and references therein), the Logistic Smooth Transition Vector Autoregressive (LST-VAR)
model (Christopoulos & León-Ledesma, 2008), some models from the family of Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) models (Comte & Lieberman, 2000; Woźniak, 2011; Woźniak,
2012). Note that all these works analyzed one period ahead Granger noncausality (see Lütkepohl, 1993;
Lütkepohl & Burda, 1997; Dufour, Pelletier & Renault, 2006, for h periods ahead inference in VAR models).

In this work, we make Granger-causal inference on the Markov-switching Vector Autoregressive (MS-
VAR) models. Considering the econometric specification of these models, in which the values of the
parameters change over time according to a hidden Markov process with a discrete state space, the analysis
is split in two parts. First, we make the regime inference on the hidden Markov process. We derive
conditions under which one variable is dispensable for the one-period-ahead forecast of the regime of a
second variable. Further, we derive the parameter conditions for Granger noncausality when the parameter
changes are treated entirely as endogenous. Such analysis overcomes the stereotypical view on the MS-VAR
models that treats them as a way of modeling the parameters of VAR model changing over time. We show
that, since the parameter changes are modeled endogenously, the regime inference constitute an integral
part of the Granger causality analysis.

The derived restrictions on the parameters of the model may be tested. They have a form of several sets
of potentially nonlinear restrictions. Therefore, they imply, first of all, that a hypothesis on noncausality
is represented by several restricted models, and secondly, that each of the model is restricted by nonlinear
restrictions on the parameters. Both of these features cause problem with classical testing of the hypotheses.

The second contribution of this work is a Bayesian inference that allows the testing of all the hypotheses
of Granger noncausality, as well as of the independence of the hidden Markov processes. None of the
existing classical solutions, that we describe in Section 5, to the problem of testing such restrictions on
parameters is easily applicable to Markov-switching VAR models. The proposed approach consists of a
Bayesian estimation of the unrestricted model, allowing for Granger causality, and of the restricted models,
where the restrictions represent hypotheses of noncausality and regime independence. For this purpose,
we construct a novel block Metropolis-Hastings sampling algorithm that allows for restricting the models.
Having estimated the models, we compare competing hypotheses, represented by the unrestricted and the
restricted models, with standard Bayesian methods using Posterior Odds Ratios and Bayes factors.

The main advantage of our approach is that we can test a hypothesis represented by several restricted
models (with nonlinear restrictions). Thus, the analysis of causal relations between variables is profound
and potentially informative. Other advantages include an effect of adopting Bayesian inference. First,
the Posterior Odds Ratio method gives arguments in favour of the hypotheses, as posterior probabilities
of the competing hypotheses are compared. In consequence, all the hypotheses are treated symmetrically.
Secondly, our estimation procedure combines and improves the existing algorithms restricting the models,
but it also preserves the possibility of using different methods for computing the marginal density of data
necessary to compute the Posterior Odds Ratio.

As potential applications of the testing procedure, we indicate macroeconomic as well as financial time
series. In particular, recent financial turmoil and the following global recession are interesting periods
for analysis. There exist many applied studies presenting evidence that these events have the nature of
switching the regime. Taylor & Williams (2009), on the example of Libor-OIS and Libor-Repo spreads,
being an approximation for counterpart risk, present how different the perception of the risk by agents
on the financial market was, first, starting from August 2007 and then, even more, from October 2008.
Further, Diebold & Yilmaz (2009) show how different behaviors characterize return spillovers and volatility
spillovers for stock exchange markets. These two studies clearly indicate that the financial data should
be analyzed in terms of Granger causality with a model that allows for changes in regimes, such as a
Markov-switching model.

For macroeconomic time series, the motivation for using Markov-switching models comes mainly from
the business cycle analysis, as in Hamilton (1989). It is important to know whether variables have different
impacts on other variables during the expansion and recession periods. Still, allowing for higher number of
states than two may allow a more detailed analysis of the interactions between variables within the cycles.
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Psaradakis, Ravn & Sola (2005) used the Markov-switching VAR models to analyze, the so called
temporary Granger causality within the Money-Output system. They condition their causality analysis on
realizations of the Hidden-Markov process. Our approach consists of choosing a Markov-switching VAR
model specification which is best supported by the data, and then restricting it according to the derived
restrictions. This approach takes into account the two sources of relations between the variables: first,
having a source in linear relations modeled with the VAR model, and second, taking into consideration
the fact that all of the variables are used to forecast the future probabilities of the states. Therefore, in the
setting considered in the present paper, Granger noncausality is not conditioned on the past realizations of
the hidden Markov process.

The remaining part of the paper is organized as follows. In Section 2 we present the model and the
Bayesian estimation of the unrestricted model. The notation, the definitions for Granger noncausality
and regime independence, and the model for the causality inference are presented in Section 3. Section 4
introduces the restrictions for the considered relations between variables. Section 5 presents discussion
and critique of classical methods of testing restrictions for Granger noncausality in different multivariate
models. The discussion is followed by a proposal of solution of the testing problem. First, the Posterior
Odds Ratio is defined, and then the algorithm for estimating the restricted models is discussed. The block
Metropolis-Hastings algorithm is described in detail in Section 6. Section 7 gives empirical illustration of
the methodology, using the example of the money-income system of variables in the USA. The data support
the hypothesis of Granger noncausality from money to income. However, money in found important
for forecasting the future state of the economy. Section 8 concludes. All the proofs are presented in the
Mathematical Appendix A, whereas the details of the estimation results are reported in Appendix B and
in Appendix C.

2. A Markov-Switching Vector Autoregressive Model

Model. Let y = (y1, . . . , yT)
′

denote a time series of T observations, where each yt is a N-variate vector for
t ∈ {1, . . . ,T}, taking values in a sampling space Y ⊂ RN. y is a realization of a stochastic process {Yt}

T
t=1. We

consider a class of parametric finite Markov mixture distribution models in which the stochastic process Yt
depends on the realizations, st, of a hidden discrete stochastic process St with finite state space {1, . . . ,M}.
Such a class of models has been introduced in time series analysis by Hamilton (1989). Conditioned on the
state, st, and realizations of y up to time t− 1, yt−1, yt follows an independent identical normal distribution.
A conditional mean process is a Vector Autoregression (VAR) model in which an intercept, µst , as well as
lag polynomial matrices, A(i)

st
, for i = 1, . . . , p, and covariance matrices, Σst , depend on the state st = 1, . . . ,M.

yt = µst +

p∑
i=1

A(i)
st

yt−i + εt, (1)

εt ∼ i.i.N(0,Σst ), (2)

for t = 1, . . . ,T. We set the vector of initial values y0 = (yp−1, . . . , y0)′ to the first p observations of the
available data.

St is assumed to be an irreducible aperiodic Markov chain starting from its ergodic distribution π =
(π1, . . . , πM), such that Pr(S0 = i|P) = πi. Its properties are sufficiently described by the (M ×M) transition
probabilities matrix:

P =


p11 p12 . . . p1M
p21 p22 . . . p2M
...

...
. . .

...
pM1 pM2 . . . pMM

 ,
in which an element, pi j, denotes the probability of transition from state i to state j, pi j = Pr(st+1 = j|st = i).
The elements of each row of matrix P sum to one,

∑M
j=1 pi j = 1.
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The model, conditioned on the state st, models a current vector of observations, yt, with an intercept,
µst , and a linear function of its lagged values up to p periods backwards. The linear relation is captured
by matrices of the lag polynomial A(i)

st
, for i = 1, . . . , p. The parameters of the VAR process, as well as

the covariance matrix Σst , change with time, t, according to discrete valued hidden Markov process, st.
Such a formulation of the model is called, according to the taxonomy of Krolzig (1997), MSIAH-VAR(p).
These changes in parameter values introduce nonlinear relationships between variables. Consequently, the
inference about interactions between variables must consider the linear and nonlinear relations; this is the
subject of the analysis in Section 4.

Complete-data likelihood function. Let θ ∈ Θ ⊂ Rk be a vector of size k, collecting parameters of the transition
probabilities matrix P and all the state-dependent parameters of the VAR process, θst : µst , A(i)

st
, Σst , for

st = 1, . . . ,M and i = 1, . . . , p. As stated by Frühwirth-Schnatter (2006), the complete-data likelihood
function is equal to the joint sampling distribution p(S,y|θ) for the complete data (S,y) given θ, where
S = (s1, . . . , sT)′. This distribution is now considered to be a function of θ for the purpose of estimating the
unknown parameter vector θ. It is further decomposed into a product of a conditional distribution of y
given S and θ, and a conditional distribution of S given θ:

p(S,y|θ) = p(y|S, θ)p(S|θ). (3)

The former is assumed to be a conditional normal distribution function of εt, for t = 1, . . . ,T, given the
states, st, with the mean equal to a vector of zeros and Σst as the covariance matrix:

p(y|S, θ) =

T∏
t=1

p(yt|S,yt−1, θ) =

T∏
t=1

(2π)−K/2
|Σst |

−1/2 exp
{
−

1
2
ε
′

tΣ
−1
st
εt

}
. (4)

The form of the latter comes from the assumptions about the Markov process and is given by:

p(S|θ) = p(s0|P)
M∏

i=1

M∏
j=1

pNi j(S)
i j , (5)

where Ni j(S) = #{st−1 = j, st = i} is a number of transitions from state i to state j, ∀i, j ∈ {1, . . . ,M}.
A convenient form of the complete-data likelihood function (3) results from representing it as a product

of M + 1 factors. The first M factors depend on the state-specific parameters, θst , and the remaining one
depends on the transition probabilities matrix, P:

p(y,S|θ) =

M∏
i=1

∏
t:st=i

p(yt|yt−1, θi)

 M∏
i=1

M∏
j=1

pNi j(S)
i j p(s0|P). (6)

Classical estimation of the model consists of the maximization of the likelihood function with e.g.
the EM algorithm (see Krolzig, 1997; Kim & Nelson, 1999b). For the purpose of testing Granger-causal
relations between variables, we propose, however, the Bayesian inference, which is based on the posterior
distribution of the model parameters θ. (For details of a standard Bayesian estimation and inference
on Markov-switching models, the reader is referred to Frühwirth-Schnatter, 2006). The complete-data
posterior distribution is proportional to the product of the complete-data likelihood function (6) and the
prior distribution:

p(θ|y,S) ∝ p(y,S|θ)p(θ). (7)

Prior distribution. The convenient factorization of the likelihood function (6) is maintained by the choice of
the prior distribution in the following form:

p(θ) =

M∏
i=1

p(θi)p(P). (8)
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The independence of the prior distribution of the state-specific parameters for each state and the transition
probabilities matrix is assumed. This allows the possibility to incorporate prior knowledge of the researcher
about the state-specific parameters of the model, θst , separately for each state.

For the unrestricted MSIAH-VAR(p) model, we assume the following prior specification. Each row of
the transition probabilities matrix, P, a priori follows an M variate Dirichlet distribution, with parameters
set to 1 for all the transition probabilities except the diagonal elements Pii, for i = 1, . . . ,M, for which it is set
to 10. Therefore, we assume that the states of an economy are persistent over time (see e.g. Kim & Nelson,
1999a). The duration of the states implied by such prior assumptions depends on the number of states. For
instance, for the models with two states, M = 2, the prior distribution implies the duration of the states
equal to eleven periods, whereas for the model with three states, M = 3, the duration of the states is equal
to six periods.

Further, the state-dependent parameters of the VAR process are collected in vectors:

βst = (µ′st
,vec(A(1)

st
)′, . . . ,vec(A(p)

st
)′)′,

for st = 1, . . . ,M. For this group of the parameters we assume the Litterman prior introduced by Doan,
Litterman & Sims (1983) and Litterman (1986). A priori these parameters follow a (N + pN2)-variate Normal
distribution, with mean equal to a vector of zeros and a diagonal covariance matrix. Elements on the
diagonal of the covariance matrix are determined by a set of of hyper-parameters, (λ1, λ2, λ3, c)′ and are as
follows:

(ςiλ3)2 for µi.st , (9a)(
λ1

exp(ck − c)

)2

for A(k)
ii.st
, (9b)

(
λ1λ2

exp(ck − c)
ςi

ς j

)2

for A(k)
i j.st
, (9c)

for i, j = 1, . . . ,N and i , j, and k = 1, . . . , p. We scale the variances of the prior distribution using the
variances of the residuals of the autoregressions of order 17 for each of the variables ςi, for i = 1, . . . ,N.

Several remarks concerning the construction of the covariance matrix of the prior distribution for
autoregressive parameters are required. First, these prior distributions are the same irrespectively of the
state, st. We set the value of the hyper-parameter responsible for shrinking of the constant terms, λ3, to
0.033(3), as in Robertson & Tallman (1999). The overall shrinking hyper-parameter for the autoregressive
parameters, λ1, is set to 0.3 as in Adolfson, Lindé & Villani (2007). The values of the variances of the
prior distributions decrease with the indicator for lag, k, according to the exponential pattern proposed by
Robertson & Tallman (1999) in the denominator of equations (9b) and (9c). We also set the value of the
hyper-parameter c to -0.13412, following the pattern of Robertson & Tallman for monthly data. Finally, we
set the value of λ2 to 1, since we do not want to shrink the off-diagonal parameters of the autoregressive
matrices more than the diagonal parameters.

Note that the means of the prior distribution for the off-diagonal elements of matrices Ast are set to zero.
If we condition our analysis on the states, this would mean that we assume a priori the Granger noncausality
hypothesis. However, in Section 4 we show that, when the states are unknown, the inference about Granger
noncausality involves many other parameters of the model. Moreover, we do not shrink these parameters
more than the diagonal elements, and consequently, we do not favor the noncausality hypotheses a priori.

We model the state-dependent covariance matrices of the MSIAH-VAR process, decomposing each to a
N×1 vector of standard deviations, σst , and a N×N correlation matrix, Rst , according to the decomposition:

Σst = diag(σst )Rst diag(σst ).

Modeling covariance matrices using such a decomposition was proposed in Bayesian inference by Barnard,
McCulloch & Meng (2000). We adapt this approach to Markov-switching models, since the algorithm
easily enables the imposing of restrictions on the covariance matrix (see the details of the MCMC sampling
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algorithm for the unrestricted and the restricted models in Section 6). We model the unrestricted model in
the same manner, because we want to keep the prior distributions for the unrestricted and the restricted
models comparable. Thus, each standard deviation σst. j for st = 1, . . . ,M and j = 1, . . . ,N, follows a log-
Normal distribution, with a mean parameter equal to 0 and the standard deviation parameter set to 2.
Finally, we assume that the prior distribution for each of the element of the correlation matrix Rst is a
uniform distribution on the interval (a, b). For each of the correlation parameter, the values of a and b
depend on all the remaining elements of the correlation matrix. a and b are chosen such that while a single
correlation parameter is sampled the resulting correlation matrix is positive-definite (the implications of
such a prior specification and the algorithm of choosing a and b are discussed in the original paper of
Barnard et al., 2000).

To summarize, the prior specification (8) now takes the detailed form of:

p(θ) =

M∏
i=1

p(Pi)p(βi)p(Ri)

 N∏
j=1

p(σi. j)

 , (10)

where each of the prior distributions is as assumed:

Pi· ∼ DM(ı′M + 9IM.i·)
βi ∼ N(0,Vβ)

σi. j ∼ logN(0, 2)
Ri. jk ∼ U(a, b)

for i = 1, . . . ,M and j, k = 1, . . . ,N, where ıM is a M× 1 vector of ones and IM.i· is ith row of an identity matrix
IM. a and b are as in Algorithm 3. Vβ is a diagonal matrix with the diagonal elements as in (9).

Posterior distribution. The structure of the likelihood function (6) and the prior distribution (10) have an
effect on the form of the posterior distribution that is proportional to the product of the two densities. The
form of the posterior distribution (7), resulting from the assumed specification, is as follows:

p(θ|y,S) ∝
M∏

i=1

p(θi|y,S)p(P|y,S). (11)

It is now easily decomposed into a posterior density of the transition probabilities matrix:

p(P|S) ∝ p(s0|P)
M∏

i=1

M∏
j=1

pNi j(S)
i j p(P), (12)

and the posterior density of the state-dependent parameters:

p(θi|y,S) ∝
∏
t:St=i

p(yt|θi,yt−1, )p(θi). (13)

Since the form of the posterior density for all the parameters is not standard, the commonly used strategy
is to simulate the posterior distribution with numerical methods. A Monte Carlo Markov Chain (MCMC)
algorithm, the Gibbs sampler (see Casella & George, 1992, and references therein), enables us to simulate
the joint posterior distribution of all the parameters of the model by sampling from the full conditional
distributions. Such an algorithm has also been adapted to Markov-switching models by Albert & Chib
(1993) and McCulloch & Tsay (1994).

In the Block Metropolis-Hastings algorithm, parameters of the model are split into sub-vectors, the full
conditional densities of which are of convenient form. Firstly, however, we draw a vector of the states of the
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economy, S. We initialize the algorithm, conditioning on the starting values for the parameters, θ(0). Then,
using the BLHK filter and smoother (see Frühwirth-Schnatter, 2006, Chapter 11 and references therein), we
obtain the probabilities Pr(st = i|y, θ(l−1)), for t = 1, . . . ,T and i = 1, . . . ,M, and then draw S(l), for lth iteration
of the algorithm.

Secondly, we draw from the posterior distribution of the transition probabilities matrix (12), conditioning
on the states drawn in the previous step of the current iteration, P(l)

∼ p(P|S(l)). Assuming the Dirichlet prior
distribution and that the hidden Markov process starts from its ergodic distribution, π, makes the posterior
distribution not of standard form. In this step of the MCMC sampler, we use the Metropolis-Hastings
algorithm as described in (Frühwirth-Schnatter, 2006, Section 11.5.5).

Thirdly, we draw the state-dependent parameters of the VAR process collected in one vector, β =
(β′1, . . . , β

′

M)′. Due to the form of the likelihood function and normal prior distribution, the full conditional
distribution is also normal f (β|y,S(l),P(l), σ(l−1),R(l−1)) = N

(
β̄∗, V̄β∗

)
, from which we draw β(l). β̄∗ and V̄β∗ are

the parameters of the full conditional distribution specified in Section 6 (see also Frühwirth-Schnatter, 2006,
Section 8.4.3).

Finally, we collect all the standard deviations in one vector, σ = (σ′1, . . . , σ
′

M)′, and all the unknown
correlation coefficients into a vector, R = (vecl(R1)′, . . . ,vecl(RM)′)′, where function, vecl, stacks all the
lower-diagonal elements of the correlation matrix into a vector. In order to draw from the full conditional
densities of these two vectors, f (σ|y,S(l),P(l), β(l),R(l−1)) and f (R|y,S(l),P(l), β(l), σ(l)), we employ the Griddy-
Gibbs sampling algorithm of Ritter & Tanner (1992), as described by Barnard et al. (2000).

The algorithm for the restricted models is presented in detail in Section 6.

3. Definitions and MS-VAR Model for Granger Causality Analysis and Regime Inference

Let {yt : t ∈ Z} be a N × 1 multivariate square integrable stochastic process on the integers Z. Write:

yt = (y
′

1t, y
′

2t, y
′

3t, y
′

4t)
′

, (14)

for t = 1, . . . ,T, where yit is a Ni × 1 vector with N1,N4 ≥ 1,N2,N3 ≥ 0 and
∑4

i=1 Ni = N. Variables of interest
are contained in vectors y1 and y4, between which we want to study causal relations. Vectors y2 and y3 (that
for N2 = N3 = 0 are empty) may contain auxiliary variables that are also used for forecasting and modeling
purposes. Moreover, define two vectors: the first is (N1 + N2)-dimensional, v1t = (y′1t, y

′

2t)
′, while the second

is (N3 + N4)-dimensional, v2t = (y′3t, y
′

4t)
′, such that:

yt =

[
v1t
v2t

]
,

with matrix vit collecting observations of vit up to period t for i = 1, 2.
Suppose that the conditional mean E[yt+1|yt;θ] is finite and that the conditional covariance matrix

E
[
(yt+1 − E[yt+1|yt])(yt+1 − E[yt+1|yt;θ])′|yt;θ

]
positive definite for all finite t. Further, let ut+1 denote the

one-step-ahead forecast error for yt+1, conditional on yt (and the parameters) when the predictor is given
by the conditional expectations, i.e.:

ut+1 = yt+1 − E[yt+1|yt;θ]. (15)

By construction, ut+1 has conditional mean zero and positive-definite conditional covariance matrix. And
let ũt+1 = yt+1−E[yt+1|v1t,y3t;θ] be the one-step-ahead forecast error for yt+1, conditional on v1t and y3t with
analogous properties.

We focus on the Granger-causal relations between variables y1 and y4. The definition of Granger
causality, originally given by Granger (1969), states simply that y4 is not causal for y1 when the past and
current information about, y4.t cannot improve mean square forecast error of y1.t+1.

Definition 1. y4 does not Granger-cause y1, denoted by y4
G
9 y1, if and only if:

E
[
u2

t+1;θ
]

= E
[
ũ2

t+1;θ
]
< ∞ ∀t = 1, . . . ,T. (16)

7



This definition refers to the conditional mean process for a univariate y1t, and holds if and only if the two
means conditioned on the full set of variables, yt, and on the restricted set, (v1t,y3t), are the same (see
Boudjellaba, Dufour & Roy, 1992). It is important to note that the definition involves conditioning on the
parameters and under a classical treatment the parameters would be set to their “true” values. Since the
latent state variables are not parameters under that approach, we choose to treat them equivalently in our
Bayesian setting. Hence, Granger causality in MS-VARs under a Bayesian approach concerns the validity
of (16) for any θ ∈ Θ.

To model Granger noncausality, we make use of the decomposition of yt into yit for i = 1, . . . , 4. The
system in equation (1) is expressed as:


y1t
y2t
y3t
y4t

 =


m1.st

m2.st

m3.st

m4.st

 +

p∑
k=1


a(k)

11.st
a(k)

12.st
a(k)

13.st
a(k)

14.st

a(k)
21.st

a(k)
22.st

a(k)
23.st

a(k)
24.st

a(k)
31.st

a(k)
32.st

a(k)
33.st

a(k)
34.st

a(k)
41.st

a(k)
42.st

a(k)
43.st

a(k)
44.st



y1t−i
y2t−i
y3t−i
y4t−i

 +


ε1t
ε2t
ε3t
ε4t

 . (17)

The covariance matrix of the residuals conditional on the regime is given by:

Σst = Var



ε1t
ε2t
ε3t
ε4t


 =


Ω11.st Ω′21.st

Ω′31.st
Ω′41.st

Ω21.st Ω22.st Ω′32.st
Ω′42.st

Ω31.st Ω32.st Ω33.st Ω′43.st

Ω41.st Ω42.st Ω43.st Ω44.st

 . (18)

With expositional purpose in mind, let us first assume that all regimes are known. Next period’s
prediction of y1 conditional on st+1 and yt is then:

E
[
y1t+1|st+1,yt, θ

]
= y1t+1 − ε1t+1. (19)

Accordingly, the forecast error is given by ε1t+1 and the conditional forecast error variance by ω1st+1 . The
necessary and sufficient condition for y4 not to Granger-cause y1 is that a(k)

14,st
in equation (17) is equal to

zero, for all k and t.
Let us now drop the assumption that the regimes are known. While the regime variable st+1 conditional

on st is independent of yt, it can be predicted using only past observations of y. Let Pr[st+1|yt, θ] denote
the probability of a particular state occurring at t + 1 conditional on the information available at t. The
prediction of next period’s value of y1 is then given by:

E
[
y1t+1|yt, θ

]
=

∑
st+1

E
[
y1t+1|st+1,yt, θ

]
Pr

[
st+1|yt, θ

]
. (20)

The role for y4 is different in (20) relative to (19) in that the history of y4 can now predict y1 by containing
information which helps predict next period’s state.

Since st+1 conditional on st is independent of yt it follows that:

Pr
[
st+1|yt, θ

]
=

∑
st

Pr [st+1|st, θ] Pr
[
st|yt, θ

]
. (21)

From this relationship we may deduce that there are only two instances when there is no additional
information in the history of y4 for predicting next period’s state. The first is when Pr[st+1|st, θ] = Pr[st+1;θ],
i.e. the Markov process is serially uncorrelated. The second case occurs when Pr[st|yt, θ] = Pr[st|v1t,y3t, θ].

This discussion presumes that the coefficients in the equation for y1 vary freely with the regime. It
is possible, however, that these coefficients vary with s1t+1 but not with s2t+1. Similarly, there may be
information in y4t for predicting s2t+1, but not for predicting s1t+1. In such situations, it may still be the case
that the prediction of y1 in (20) does not depend on the history of y4.
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The regime inference question is in fact better addressed in terms of the sub-vectors v1 and v2. Apart
from decomposing the observed variables into the vit sub-vectors, the parameter vectors and matrices are
decomposed analogously. Furthermore, the hidden Markov process is decomposed into two sub-processes,
st = (s1t, s2t), where sit has Mi states that are characterized by transition probability matrices, P(i) (and ergodic
probabilities, π(i)) for i = 1, 2, such that M = M1 ·M2. The construction of the joint transition probabilities
matrix, P, is not specified for the moment and will be the subject of further analysis.

Specifically, a restricted version of the system in equation (1) is given by:[
v1t
v2t

]
=

[
µ1.s1t

µ2.s2t

]
+

p∑
k=1

A(k)
11.s1t

A(k)
12.s1t

A(k)
21.s2t

A(k)
22.s2t

 [v1t−i
v2t−i

]
+

[
ε1t
ε2t

]
. (22)

where the following linear restrictions have been imposed:

µi.st = µi.sit , A(k)
i j.st

= A(k)
i j.sit
, i, j = 1, 2, and k = 1, . . . , p. (23)

If the εit residuals are independent of the regime, equation (23) states that vit is only directly affected by sit.
Indirectly, it may be affected by (lags of) the other regime process s jt through lags of v jt (i , j).

The marginal distribution of the εit|st may also be subject to linear restrictions given by:

Σii.st = Σii.sit , i = 1, 2. (24)

The restrictions in (24) are necessary, but not sufficient for p(εt|st) = p(ε1t|s1t)p(ε2t|s2t), meaning that ε1t|s1t
and ε2t|s2t are independent. The additional requirement is simply that Σ12.st = 0 for all regimes.

In the event that the restrictions in (23) and (24) are satisfied and the covariance matrix Σ12.st = 0 for all
regimes, then vit is only directly influenced by the sit regime process, i.e., through the regime dependent
µi.sit and Ai j.sit matrices. Nevertheless, vit may still be indirectly influenced by lags of the s jt process through
lags of v jt.

We are now in a position to give a definition of predictive conditional state independence:

Definition 2. The regime predictions of s1.t+1 and s2.t+1 conditional on yt are independent if and only if:

Pr
[
(s1.t+1, s2.t+1) = ( j1, j2)|yt, θ

]
= Pr

[
s1.t+1 = j1|yt, θ

]
· Pr

[
s2.t+1 = j2|yt, θ

]
, (25)

for all θ ∈ Θ, j1 = 1, . . . ,M1 with M1 ≥ 2, j2 = 1, . . . ,M2 and t = 1, . . . ,T.

In addition, we shall say that there is no unique information in v2t for predicting s1.t+1 when the following
holds for all cases considered in this definition:

Pr
[
s1.t+1 = j1|yt, θ

]
= Pr

[
s1.t+1 = j1|v1t, θ

]
. (26)

An analogous relation may be specified for the predictions of s2.t+1. In the next section we shall first consider
under which restrictions on the MS-VAR process that the two regime processes are independent in the sense
of Definition 2 as well as when equation (26) holds. Second, we analyse under which conditions y4 does
not Granger cause y1 in this setup.

4. Regime Inference and Granger Causality Analysis

4.1. Regime Inference
The first result in this paper concerns the restrictions that MS-VAR system in (1) need to satisfy to guarantee
that we can make optimal inference from the v1t sub-system about the regimes that affect these variables.

Proposition 1. The regime predictions of s1t+1|v1t and s2t+1|v2t are independent and there is no unique information
in v2t for predicting s1t+1 if and only if either:
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(A1): (i) P = (P(1)
⊗ P(2)),

(ii) equations (23) and (24) are satisfied,

(iii) Σ12.st = 0, and

(iv) A(k)
12.s1t

= 0,

for all k = 1, . . . , p and sit = 1, . . . ,Mi with M1 ≥ 2, and i, j = 1, 2; or:

(A2): P = (ıM1π
(1)′
⊗ P(2)),

is satisfied for all θ ∈ Θ.

First, condition (A1)(i) is a result of forming the full transition probabilities matrix out of the transition
probabilities matrices of two independent hidden Markov processes (see Sims, Waggoner & Zha, 2008).
Restrictions (A1)(ii) state that the parameters of the equation for v1t change over time with the first Markov
process, whereas the parameters of the equation for v2t follow the second Markov process as in equation
(22). Furthermore, restrictions (A1)(iii) guarantee independence in the sense discussed below equation (24).
Condition (A2) states simply that the first out of the two decomposed hidden Markov processes is serally
uncorrelated and we can thereby model the residuals ε1t with a mixture of Gaussian distributions.

Second, note that conditions (A1) and (A2) imply linear restrictions on parameters of the model. Fur-
thermore, if we change the restrictions in (A1)(iv) to A(k)

21s2t
= 0, then there is no unique information in v1t

for predicting s2t+1. Moreover, in the Appendix it is shown that:

Corollary 1. If and only if restrictions in (A1)(i)-(iii) are satisfied for all θ ∈ Θ, then

Pr
[
(s1,t, s2,t) = (i1, i2)|yτ, θ

]
= Pr

[
s1,t = i1|yτ, θ1,P(1)

]
Pr

[
s2,t = i2|yτ, θ2,P(2)

]
,

for all i1 = 1, . . . ,M1 with M1 ≥ 2, i2 = 1, . . . ,M2 with M2 ≥ 2, and t, τ = 1, . . . ,T, with θ = (θ1, θ2,P).

Hence, for the predictions of s1t and s2t to be independent, it is not sufficient that the Markov processes
are independent. In fact, the joint distribution for yt conditional on st (and yt−1) being equal to the product
between the marginal distributions for vlt conditional on slt (and vt−1) for l = 1, 2 must also be satisfied.
Under these additional restrictions forecasting, filtering and smoothing inference about the two regime
variables can be conducted independently. Additionally:

Corollary 2. If and only if condition (A1) is satisfied for all θ ∈ Θ, then

Pr
[
(s1,t, s2,t) = (i1, i2)|yτ, θ

]
= Pr

[
s1,t = i1|v1,τ, θ1,P(1)

]
Pr

[
s2,t = i2|vτ;θ2,P(2)

]
,

for all i1 = 1, . . . ,M1 with M1 ≥ 2, i2 = 1, . . . ,M2, and t, τ = 1, . . . ,T, with θ = (θ1, θ2,P).

In Appendix A (see Lemma 2 and Lemma 3) we present necessary and sufficient conditions for
conducting optimal inference on s1,t and s2,t independently in Markov-switching models when the density
function for εt|st meets the criteria for conducting optimal inference on st using the algorithm in Hamilton
(1994) and Kim (1994).

The intuition behind condition (A1) is, in fact, straightforward. Suppose p = 1, N = M = M1 = 2, while
ε2t is i.i.d.. The restrictions on Σst in (A1) are sufficient for the residual of the equation for v2 to be i.i.d..
Now consider the experiment of drawing two v2t’s, one for each regime, when v1t−1 and v2t−1 are fixed. The
difference between these two draws is:

v2t|st=2 − v2t|st=1 =
(
µ2,2 − µ2,1

)
+

(
A21,2 − A21,1

)
v1t−1 +

(
A22,2 − A22,1

)
v2t−1. (27)

The right hand side of (27) is zero for all vectors (v1t−1, v2t−1) when the coefficients in the v2 equation are
constant across states. Accordingly, if these restrictions are satisfied, then Pr[st|v1t,v2t] = Pr[st|v1t,v2t−1] and
all information about st is found in the equation for v1. If the coefficient on v2t − 1 in that equation is zero
for both states, then lags of v2t−1 plays no role for predicting regime switches either.
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To sum up, condition (A1) tells us exactly under which conditions we can disregard the information in
v2t when we are either only interested in the behavior of the variables in the v1t vector or in the s1t regime
process. Alternatively, if we are primarily interested in v2t (or in s2t ) and would like to treat v1t as being
“exogenous”, then (A1) provides the set of restrictions that we implicitly impose on the system describing
both v2t and v1t.

4.2. Granger Noncausality Analysis
The restrictions for the regime independence presented in the previous section are stronger than what is
required for Granger noncausality. In this section we focus on the necessary and sufficient conditions for
this type of noncausal relations. Additional notation is first required. Specifically, define:

m̄1t ≡ E
[
m1st+1 |yt, θ

]
, (28a)

ā(k)
1r.t ≡ E

[
a(k)

1r.st+1
|yt;θ

]
, (28b)

for all r ∈ {1, . . . , 4} and k ∈ {1, . . . , p}. The one-step-ahead forecast error for y1 is then given by ut+1 =
zt+1 + ε1t+1, where:

zt+1 ≡
(
m1st+1 − m̄1t

)
+

p∑
k=1

(
a(k)

11.st+1
− ā(k)

11.t

)
y1.t+1−k

+

p∑
k=1

(
a(k)

12.st+1
− ā(k)

12.t

)
y2.t+1−k +

p∑
k=1

(
a(k)

13.st+1
− ā(k)

13.t

)
y3.t+1−k

+

p∑
k=1

(
a(k)

14.st+1
− ā(k)

14.t

)
y4.t+1−k,

is (conditionaly on yt) uncorrelated with ε1t+1.1 A sufficient, but not necessary, condition for zt+1 to be mean
zero stationary is that y1 is covariance stationary. Another possibility is that yt is co-integrated. For the
remainder of this section, we shall assume that ut+1 is mean zero stationary.

This assumption brings us to the main result about Granger noncausality.

Proposition 2. y4 does not Granger-cause y1 if and only if either:

(A1) or

(A3): (i)
∑M

j=1 m1. jpi j = m̄1,

(ii)
∑M

j=1 a(k)
1r. jpi j = ā(k)

1r ,

(iii) ā(k)
14 = 0,

for all i = 1, . . . ,M, r = 1, . . . , 4, and k = 1, . . . , p,

is satisfied for all θ ∈ Θ.

The nonlinear restrictions in condition (A3)(i) and (A3)(ii) state that given any regime j, the expected
value of each random coefficient in the equation for y1 is constant. Condition (A3)(iii) sets each expected
value of the coefficients on lags of y4 to zero.

Note that the restrictions of (A3) do not rely on a decomposition of the hidden Markov process. This
comes from the fact that these conditions refer solely to the expected value of the parameters of the equation
for y1. At the same time, they do not rule out that the transition matrix P has reduced rank or that the

1See (Krolzig, 1997, Chapter 4) . Blix (1997) derives a general formula for the expectation of yt+τ, τ ≥ 1, conditional on yt and
applies it to rational expectations hypotheses.
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Markov process can be decomposed into multiple processes. Hence, the restrictions in (A3) are very general
and it is not possible to determine the number of restrictions without specifically referring to the properties
of the transition matrix.

From the perspective of the full MS-VAR system, the restrictions in (A3) are weaker than those in (A1).
First, each restriction in (A1)(ii) results in a constraint on an individual parameter, whereas each restriction
in (A3)(i) and (A3)(ii) involves a function on several parameters.2 In addition, (A3) does not include any
restriction on the covariance matrices, while (A1) has several linear restrictions on Σst . Restriction (A3)(iii)
compared to restrictions (A1)(vi) does not constrain any of the parameter to zero, but instead imposes a
zero condition on the expected value of the forecasted parameter. Thus, (A3)(iii) is a weaker assumption
than (A1)(iv).

However, contrarily to conditions (A1) and (A2), the condition (A3) is not linear in parameters. Still,
conditions (A3)(i) and (A3)(ii) have equivalent form,

∑M
j=1 m1, j(pi j − pkj) = 0 for i, k = 1, . . . ,M and i , k,

which for some special cases give rise to linear restrictions. In Section 5 we discuss consequences of the
nonlinearity of the restrictions when testing them.

Under specific assumptions, the restrictions of Proposition 2 may be simplified. We present such a
possibility in Corollary 3:

Corollary 3. Suppose that condition (A2) is satisfied for all θ ∈ Θ, then condition (A3) is equivalent to:

(A4): (i)
∑M1

j1=1 m1.( j1, j2)π
(1)
j1

= m̄1,

(ii)
∑M1

j1=1 a(k)
1r.( j1, j2)π

(1)
j1

= ā(k)
1r ,

(iii) ā(k)
14 = 0,

for all j2 = 1, . . . ,M2, r = 1, . . . , 4, and k = 1, . . . , p.

Corollary 3 reintroduces the decomposition of the hidden Markov process. One benefit is that the
number of the restrictions to be imposed on the model is typically reduced.

This Corollary is of particular interest when M = 2. For such Markov processes, the rank of P can
be either one or two. In both cases, condition (A2) is satisfied and, hence, condition (A4) gives two sets
of parameter constraints that are equivalent to the set of restrictions in (A3). If the rank of P is unity
(M1 = 2,M2 = 1), then the two-state Markov process is serially uncorrelated. For this case, (A4) reduces
to A4(iii), where

∑2
j1=1 a(k)

14, j1
π(1)

j1
= 0 for all k, while (A4)(i)-(ii) are satisfied by construction. Notice that all

restrictions are nonlinear and that the number of restrictions is equal to p + 1.
On the other hand, if the rank of P is two (M1 = 1,M2 = 2), then the Markov process is serially correlated

with P = P(2). Now, condition (A4) states that all coefficients in the equation for y1 are constant across the
regimes, and the coefficients on lags of y4 are zero, i.e., all restrictions are linear and the total number of
equal to 3p + 1.

5. Bayesian Testing

Restrictions (A1)–(A4) can be tested. We first consider classical tests and their limitations and then present
the Bayesian testing procedure as a solution. The obstacles in using classical tests are threefold:

• The asymptotic distribution of the parameters of the MS-VAR is unknown;

• The conditions for noncausality may result in several sets of restrictions on parameters. Consequently,
one hypothesis may be represented by several restricted models;

2This is also true when M1 = M since now all restrictions in (A1)(ii) concern the constancy of the coefficient matrices and the
residual covariance matrices of the v2t sub-system, while the corresponding matrices of the v1t sub-system are allowed to vary freely
with the regime.
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• Some of the restrictions are in the form of nonlinear functions of parameters of the model.

The proposed solution consists of a new Block Metropolis-Hastings sampling algorithm for the estimation
of the restricted models, and of the application of a standard Bayesian test to compare the restricted models
to the unrestricted one.

Classical testing. In the general case, all the mentioned problems with classical testing are difficult to cope
with. While, the lack of the asymptotic distribution of the parameters could be solved using simulation
methods, the problem of testing a hypothesis represented by several restricted models seems unsolvable
with existing classical methods.

The problem of the nonlinearity of the restrictions, however, is well known in the studies on testing
parameter conditions for Granger noncausality in multivariate models. In the general case, nonlinear
restrictions on parameters of the model may result in the matrix of partial derivatives of the restrictions
with respect to the parameters not having a full rank. Consequently, the asymptotic distribution of test
statistic is not known.

This problem was met in several studies on Granger noncausality testing in time series models. Boud-
jellaba et al. (1992) derive conditions for Granger noncausality for VARMA models that result in multiple
nonlinear restrictions on original parameters of the model. As a solution to the problem of testing the
restrictions, they propose a sequential testing procedure. There are two main drawbacks of this method.
First, despite properly performed procedure, the test may still appear inconclusive, and second, the confi-
dence level is given in the form of inequalities. The problem of testing non-linear restrictions was examined
for h-periods ahead Granger causality for VAR models. Dufour et al. (2006) propose the solution based on
formulating a new model for each h, and obtain linear restrictions on the parameters on the model. These
restrictions can be easily tested with standard tests. In another work by Dufour (1989) the approach is
based on the linear regression theory; its solutions would require separate proofs in order to apply it to
Markov-switching VARs. Finally, Lütkepohl & Burda (1997) propose a solution for testing nonlinear hy-
potheses based on a modification of the Wald test statistic. Given the asymptotic normality of the estimator
of the parameters, the method uses a modification that, together with standard asymptotic derivations,
overcomes the singularity problem.

Finally, the problem of testing the nonlinear restrictions was faced by Warne (2000), who derives the
restrictions for Granger noncausality, noncausality in variance and noncausality in distribution for Markov-
switching VAR models. Among the solutions reviewed in this Section, only that proposed by Lütkepohl &
Burda (1997) seems applicable to this particular problem. This finding should, however, be followed with
further studies proving its applicability.

Bayesian testing. In this study we propose a method of solving the problems of testing the parameter
restrictions based on Bayesian inference. This approach to testing the noncausality conditions was used
by Woźniak (2011, 2012). Both of the papers work on the Extended CCC-GARCH model of Jeantheau
(1998). Two other works use the Bayesian approach to make inference about a concept somehow related to
Granger noncausality, namely exogeneity. Jarociński & Maćkowak (2011) use Savage-Dickey’s Ratio to test
block-exonegeneity in the VAR model, while Pajor (2011) uses Bayes factors to assess exogeneity conditions
for models with latent variables, and in particular in multivariate Stochastic Volatility models.

In order to compare the unrestricted model, denoted byMi, and the restricted model,M j and = j , i,
we use the Posterior Odds Ratio (POR), which is a ratio of the posterior probabilities, Pr(M|y), attached to
each of these models representing the hypotheses:

POR =
Pr(Mi|y)
Pr(M j|y)

=
p(y|Mi)
p(y|M j)

Pr(Mi)
Pr(M j)

, (29)

where p(y|M) is the marginal density of data and Pr(M) is the prior probability of a model. In order to
compare two competing models, one might also consider using Bayes factors, defined by:

Bi j =
p(y|Mi)
p(y|M j)

. (30)
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Note that if one chooses not to discriminate any of the models a priori, setting equal prior probabilities for
both of the models (Pr(Mi)/Pr(M j) = 1), the Posterior Odds Ratio is then equal to a Bayes factor. This
method of testing does not have any of the drawbacks of the Likelihood Ratio test, once samples of draws
from the posterior distributions of parameters for both the models are available (see Geweke, 1995; Kass &
Raftery, 1995).

In this work, in order to asses the credibility of the hypotheses, each of which is represented by several sets
of restrictions – and thus several models – we compute Posterior Odds Ratios. The results of this analysis are
reported in Table 6 in Section 7. Suppose that a hypothesis is represented by several models. LetHi denote
the set of indicators of the models that represent this hypothesis,Hi = { j :M j represents ith hypothesis}. For
instance, in our example, the hypothesis of Granger noncausality in mean is represented by four models,
such thatH2 = {1, 2, 4, 5}. Further, suppose that one is interested in comparing the posterior probability of
this hypothesis to the hypothesisH0, represented by the unrestricted modelM0. Then the credibility of the
hypothesisHi compared to the hypothesisH0 may be assessed with the Posterior Odds Ratio given by:

POR =
Pr(Hi|y)
Pr(H0|y)

=

∑
j∈Hi

Pr(M j|y)

Pr(M0|y)
. (31)

We set equal prior probabilities for all the models, which has the effect that none of the models is preferred
a priori.

Testing the noncausality restrictions in MS-VARs. Taking into account the complicated structure of the restric-
tions, we choose Posterior Odds Ratio (29) to assess the hypotheses. The crucial element of this method
the is computation of marginal data densities, p(y|M), for the unrestricted and the restricted models. There
are several available methods of computing this value. In this study we choose the Modified Harmonic
Mean (MHM) method of Geweke (1999). For a chosen model, given the sample of draws, {θ(i)

}
S
i=1, from the

posterior distribution of the parameters, p(θ|y,M), the marginal density of data is computed using:

p(y|M) =

S−1
S∑

i=1

h(θ(i))
L(y;θ(i),M)p(θ(i)|M)


−1

, (32)

where L(y;θ(i),M) is a likelihood function od modelM. h(θ(i)), as specified in Geweke (1999), is a k-variate
truncated normal distribution with mean parameter equal to the posterior mean and covariance matrix set
to the posterior covariance matrix of θ. The truncation must be such that h(θ) had thinner tails than the
posterior distribution.

Other methods of computing the marginal density of data may also be employed. Several estimators
were derived, taking into account the characteristics of Markov-switching models. The reader is referred to
the original papers by Frühwirth-Schnatter (2004), Sims et al. (2008) and Chib & Jeliazkov (2001). Moreover,
Frühwirth-Schnatter (2004) rises the problem of the bias of the estimators when the label permutation
mechanism is missing in the algorithm sampling from the posterior distribution of the parameters. The bias
appears to be due to the invariance of the likelihood function and the prior distribution of the parameters,
with respect to permutations of the regimes’ labels. Then the model is not globally identified. The
identification can be insured by the ordering restrictions on parameters, and can also be implemented
within the Gibbs sampler. Simply, it is sufficient that the values taken by one of the parameters of the model
in different regimes can be ordered, and that the ordering holds for all the draws from the Gibbs algorithm
to assure global identification (see Frühwirth-Schnatter, 2004). We assure that this is the case, i.e. that the
MS-VAR models considered for causality inference are globally identified by the ordering imposed on some
parameter.

Another element of the testing procedure is the estimation of the unrestricted model and the restricted
models representing hypotheses of interest. We present a new Block Metropolis-Hastings sampling al-
gorithm specially constructed for the purpose of testing noncausality hypotheses in the MS-VAR models
in Section 6. It enables the imposing of restrictions on parameters resulting from conditions (A1) - (A7),
and in effect testing different hypotheses of Granger noncausality between variables. In the algorithm, the
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restrictions are imposed on different groups of the parameters of the model. First, linear restrictions on
the parameters of the VAR process, β, are implemented according to Frühwirth-Schnatter (2006). Next,
parameters of the covariance matrices are decomposed into standard deviations, σ, and correlation param-
eters, R. To these parameter groups we apply the Griddy-Gibbs sampler of Ritter & Tanner (1992), as in
Barnard et al. (2000). Such a form of the sampling algorithm easily allows to restrict any of the parameters.
Note that the algorithm of Barnard et al. (2000) has not yet been applied to Markov-switching models.
Finally, we restrict the matrix of transition probabilities, P, joining the approach of Sims et al. (2008) with
the Metropolis-Hastings algorithm of Frühwirth-Schnatter (2006). The Metropolis-Hastings step needs to
be implemented, as we require the hidden Markov process to be irreducible. Moreover, additional parts
of the algorithm are constructed in order to impose nonlinear restrictions on the parameters of the VAR
process and the decomposed covariance matrix.

To summarize, we propose the following procedure in order to test different Granger noncausality
hypotheses in Markov-switching VAR models.

Step 1: Specify the MS-VAR model. Choose the order of VAR process, p ∈ {0, 1, . . . , pmax}, and the number
of states, M ∈ {1, . . . ,Mmax}, using marginal densities of data (estimation of all the models is required).

Step 2: Set the restrictions. For the chosen model, derive restrictions on parameters.

Step 3: Test restrictions (A1) and (A2). Estimate the restricted models and compute for them marginal
densities of data. Compare the restricted models to the the unrestricted one using the Posterior Odds
Ratio, e.g. according to the scale proposed by Kass & Raftery (1995).

Step 4: Test hypotheses of noncausality. If the model restricted according to (A1) is preferred to the unre-
stricted model, then noncausality of all kinds is established. In the other case, if the model restricted
according to (A2) is preferred to the unrestricted model, in order to test different noncausality hy-
potheses use conditions (A6)–(A7). In the opposite case use conditions (A3)–(A5). For testing, use the
Posterior Odds Ratio as in Step 3.

Advantages and costs of the proposed approach. We start by naming the main advantages of the proposed
Bayesian approach to testing the restrictions for Granger noncausality. First, using the Posterior Odds
Ratio testing principle, we avoid all the problems of testing nonlinear restrictions on the parameters of the
model that appear in classical tests. Secondly, in the context of the controversies concerning the choice
of number of states for Markov-switching models in the classical approach (see Psaradakis & Spagnolo,
2003), the Bayesian model selection proposed in Step 1 is a proper method free of such problems. Next,
as emphasized in Hoogerheide, van Dijk & van Oest (2009), the Bayesian Posterior Odds Ratio procedure
gives arguments in favour of hypotheses. Accordingly, the hypothesis preferred by the data is not only
rejected or not rejected, but is actually accepted with some probability. Finally, Bayesian estimation is a basic
estimation procedure proposed for the MS-VAR models and is broadly described and used in many applied
publications.

However, this approach has also its costs. First of all, in order to specify the complete model, prior
distributions for the parameters of the model and the prior probabilities of models need to be specified.
This necessity gives way to subjective interpretation of the inference, on the one hand, but on the others
it may ensure economic interpretation of the model. The other cost of the implementation of the Bayesian
approach is the time required for simulation of all the models, first in the model selection procedure, and
second in testing the restrictions of the parameters.

6. The Block Metropolis-Hastings sampler for restricted MS-VAR models

This section scrutinizes the MCMC sampler set up for sampling from the full conditional distributions.
Each step describes the full conditional distribution of one element of the partitioned parameter vector.
The parameter vector is broken up into five blocks: the vector of the latent states of the economy S, the
transition probabilities P, the regime-dependent covariance matrices (themselves decomposed into standard
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deviations σ and correlations R), and finally the regime-dependent vector of constants plus autoregressive
parameters β. For each block of parameters – conditionally on the parameter draws from the four other
blocks – we describe how we sample from the posterior distribution. The symbols, l and l − 1, refer to the
iteration of the MCMC sampler. For the first iteration of a MCMC run, l = 1, initial parameter values come
from an EM algorithm. The rest of this section describes all the constituting blocks that form the MCMC
sampler.

6.1. Sampling the vector of the states of the economy
The first drawn parameter is the vector representing the states of the economy, S. Being a latent variable,
there are no priors nor restrictions on S. We first use a filter (see Section 11.2 of Frühwirth-Schnatter, 2006,
and references therein) and obtain the probabilities Pr(st = i|y, θ(l−1)), for t = 1, . . . ,T and i = 1, . . . ,M, and
then draw S(l), for lth iteration of the algorithm. For the full description of the algorithm used in this work
the reader is referred to Droumaguet & Woźniak (2012).

6.2. Sampling the transition probabilities
In this step of the MCMC sampler, we draw from the posterior distribution of the transition probabilities
matrix, conditioning on the states drawn in the previous step of the current iteration, P(l)

∼ p(P|S(l)). For
the purpose of testing, we impose restrictions of identical rows of P. Sims et al. (2008) provide a flexible
analytical framework for working with restricted transition probabilities, and the reader is invited to consult
Section 3 of that work for an exhaustive description of the possibilities provided by the framework. We
however limit the latitude given by the reparametrization in order to ensure the stationarity of Markov
chain S.

Reparametrization. The transitions probabilities matrix P is modeled with Q vectors w j, j = 1, · · · ,Q and
each of size d j. Let all the elements of w j belong to the (0, 1) interval and sum up to one, and stack all of them
into the column vector w = (w′

1, . . . ,w
′

Q)
′

of dimension d =
∑Q

j=1 d j. Writing p = vec(P′ ) as a M2 dimensional
column vector, and introducing the (M2

× d) matrix M, the transition matrix is decomposed as:

p = Mw, (33)

where the M matrix is composed of the Mi j sub-matrices of dimension (M × d j), where i = 1, . . . ,M, and
j = 1, . . . ,Q:

M =


M11 . . . M1Q
...

. . .
MM1 MMQ

 ,
where each Mi j satisfies the following conditions:

1. For each (i, j), all elements of Mi j are non-negative.
2. ı

′

MMi j = Λi jı
′

d j
, where Λi j is the sum of the elements in any column of Mi j.

3. Each row of M has, at most, one non-zero element.
4. M is such that P is irreducible: for all j, d j ≥ 2.

The first three conditions are inherited from Sims et al. (2008), whereas the last condition assures
that P is irreducible, forbidding the presence of an absorbing state that would render the Markov chain
S non-stationary. The non-independence of the rows of P is described in Frühwirth-Schnatter (2006,
Section 11.5.5). Once the initial state s0 is drawn from the ergodic distribution π of P, direct MCMC
sampling from the conditional posterior distribution becomes impossible. However, a Metropolis-Hastings
algorithm can be set up to circumvent this issue, since a kernel of joint posterior density of all rows is
known: p(P|S) ∝

∏Q
j=1Dd j (w j)π. Hence, the proposal for transition probabilities is obtained by sampling

each w j from the convenient Dirichlet distribution. The priors for w j follow a Dirichlet distribution,
w j ∼ Dd j (b1, j, . . . , bd j, j). We then transform the column vector w into our candidate matrix of transitions
probabilities using equation (33). Finally, we compute the acceptance rate before retaining or discarding
the draw.
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Algorithm 1. Metropolis-Hastings for the restricted transition matrix.

1. s0 ∼ π. The initial state is drawn from the ergodic distribution of P.
2. w j ∼ Dd j (n1, j + b1, j, . . . ,nd j, j + bd j, j) for j = 1, . . . ,Q. ni, j corresponds to the number of transitions from

state i to state j, counted from S. The candidate transition probabilities matrix – in the transformed
notation – are sampled from a Dirichlet distribution.

3. Pnew = Mw. The proposal for the transitions probabilities matrix is reconstructed.
4. Accept Pnew if u ≤ πnew

πl−1 , where u ∼ U[0, 1]. πnew and πl−1 are the vectors of the ergodic probabilities
resulting from the draws of the transition probabilities matrix Pnew and Pl−1 respectively.

6.3. Sampling a second and independent hidden Markov process
Regime inference from proposition (A1) involves two independent Markov processes. Equation (22) de-
composes the vector of observations into two sub-vectors. Equations contained within each sub-vector are
subject to switches from a different and independent Markov process. Sims et al. (2008, section 3.3.3) cover
a similar decomposition.

Adding a Markov process is trivial in the sense it involves repeating the steps of Section 6.1 and algorithm
1 subsequently for a second process, yielding two distinct transition probabilities matrices P(1) and P(2). The
transition probabilities matrix for the whole system is formed out of the transition probabilities matrices of
two independent hidden Markov processes, P = (P(1)

⊗ P(2)).

6.4. Sampling the covariance matrices
Adapting the approach proposed by Barnard et al. (2000) to Markov-switching models, we sample from the
full conditional distribution of non-restricted and restricted covariance matrices. We thus decompose each
covariance matrix of the MSIAH-VAR process into a vector of standard deviations (σst ) and a correlation
matrix (Rst ) using the equality:

Σst = diag(σst )Rst diag(σst ).

This decomposition – statistically motivated – enables the partition of the covariance matrix parameters
into two categories that are well suited for the restrictions we want to impose on the matrices. In a standard
covariance matrix, restricting a variance parameter to some value has some impact on the depending
covariances, whereas here variances and covariances (correlations) are treated as separate entities. The
second and not the least advantage of the approach of Barnard et al. (2000) lies in the employed estimation
procedure, the griddy-Gibbs sampler. The method introduced in Ritter & Tanner (1992) is well suited for
sampling from an unknown univariate density p(Xi|X j, i , j). This is done by approximating the inverse
conditional density function, which is done by evaluating p(Xi|X j, i , j) thanks to a grid of points. Imposing
the desired restrictions on the parameters, and afterwards iterating a sampler for every standard deviation
σi.st and every correlation R j.st , we are able to simulate desired posteriors of the covariance matrices. While
adding to the overall computational burden, the griddy-Gibbs sampler gives us full latitude to estimate
restricted covariance matrices of the desired form.

Algorithm 2. Griddy-Gibbs for the standard deviations. The algorithm iterates on all the standard deviation
parameters σi.st for i = 1, . . . ,N and st = 1, . . . ,M. Similarly to Barnard et al. (2000) we assume log-normal
priors, log(σi.st ) ∼ N(0, 2). The grid is centered on the residuals’ sample standard deviation σ̂i.st and divides
the interval (σ̂i.st − 2σ̂σ̂i.st

, σ̂i.st + 2σ̂σ̂i.st
) into G grid points. σ̂σ̂i.st

is an estimator of the standard error of the
estimator of the sample standard deviation.

1. Regime-invariant standard deviations: Draw from the unknown univariate density p(σi|y,S,P, β, σ−i,R).
This is done by evaluating a kernel on a grid of points, using the proportionality relation, with the
likelihood function times the prior: σi|y,S,P, β, σ−i,R ∝ p(y|S, θ) · p(σi). Reconstruct the c.d.f. from the
grid through deterministic integration and sample from it.

2. Regime-varying standard deviations: For all regimes st = 1, . . . ,M, draw from the univariate density
p(σi.st |y,S,P, β, σ−i.st ,R), evaluating a kernel thanks to the proportionality relation, with the likelihood
function times the prior: σi.st |y,S,P, β, σ−i.st ,R ∝ p(y|S, θ) · p(σi.st ).
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Algorithm 3. Griddy-Gibbs for the correlations The algorithm iterates on all the correlation parameters Ri.st

for i = 1, . . . , (N−1)N
2 and st = 1, . . . ,M. Similarly to Barnard et al. (2000), we assume uniform distribution on

the feasible set of correlations, Ri.st ∼ U(a, b), with a and b being the bounds that keep the implied covariance
matrix positive definite; see the aforementioned reference for details of setting a and b. The grid divides
(a, b) into G grid points.

1. Depending on the restriction scheme, set correlations parameters to 0.
2. Regime-invariant correlations: Draw from the univariate density p(Ri|y,S,P, β, σ,R−i), evaluating a

kernel thanks to the proportionality relation, with the likelihood function times the prior: Ri|y,S,P, β, σ,R−i ∝

p(y|S, θ) · p(Ri).
3. Regime-varying correlations: For all regimes st = 1, . . . ,M, draw from the univariate density p(Ri.st |y,S,P, β, σ,R−i.st ),

evaluating a kernel thanks to the proportionality relation, with the likelihood function times the prior:
Ri.st |y,S,P, β, σ,R−Ri.st

∝ p(y|S, θ) · p(Ri.st ).

6.5. Sampling the vector autoregressive parameters
Finally, we draw the state-dependent autoregressive parameters, βst for st = 1, . . . ,M. The Bayesian param-
eter estimation of finite mixtures of regression models when the realizations of states is known has been
precisely covered in Frühwirth-Schnatter (2006, Section 8.4.3). The procedure consists of estimating all the
regression coefficients simultaneously by stacking them into β = (β0, β1, . . . , βM), where β0 is a common
regression parameter for each regime, and hence is useful for the imposing of restrictions of state invariance
for the autoregressive parameters. The regression model becomes:

yt = Ztβ0 + ZtDi.1β1 + · · · + ZtDi.MβM + εt, (34)

εt ∼ i.i.N(0,Σst ). (35)

We have here introduced the Di.st , which are M dummies taking the value 1 when the regime occurs
and set to 0 otherwise. A transformation of the regressors ZT also has to be performed in order to allow for
different coefficients on the dependent variables, for instance to impose zero restrictions on parameters. In
the context of VARs, Koop & Korobilis (2010, Section 2.2.3) detail a convenient notation that stacks all the
regression coefficients on a diagonal matrix for every equation. We adapt this notation by stacking all the
regression coefficients for all the states on diagonal matrix. If zn.st.t corresponds to the row vector of 1 + Np
independent variables for equation n, state st (starting at 0 for regime-invariant parameters), and at time t,
the stacked regressor Zt will be of the following form:

Zt = diag(z1.0.t, . . . , zN.0.t, z1.1.t, . . . , zN.1.t, . . . , z1.M.t, . . . , zN.M.t).

This notation enables the restriction of each parameter, by simply setting zn.st.t to 0 where desired.

Algorithm 4. Sampling the autoregressive parameters. We assume normal prior for β, i.e. β ∼ N(0,Vβ) .

1. For all Zts, impose restrictions by setting zn,st,t to zero accordingly.
2. β|y,S,P, σ,R ∼ N(β,Vβ). Sample β from the conditional normal posterior distribution, with the

following parameters:

Vβ =

V−1
β +

T∑
t=1

Z
′

tΣ
−1
st

Zt


−1

and

β = Vβ

 T∑
t=1

Z
′

tΣ
−1
st

yt

 .
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6.6. Simulating restrictions in the form of functions of the parameters.
Some of the restrictions for Granger noncausality presented in Section 4 will be in the form of complicated
functions of parameters. Suppose some restriction is in the form:

θi = g(θ−i),

where g(.) is a scalar function of all the parameters of the model but θi. The restricted parameter, θi, in this
study may be one of the parameters from the autoregressive parameters, β, or standard deviations, σ. In
such a case, the full conditional distributions for β or σ are no longer independent and need to be simulated
with a Metropolis-Hastings algorithm.

Restriction on the vector autoregressive parameters β. In this case, the deterministic function restricting param-
eter βi will be of the following form:

βi = g(β−i, σ,R,P).

We draw from the full conditional distribution of the vector autoregressive parameters, p(β|y,S,P, σ,R),
using the Metropolis-Hastings algorithm:

Algorithm 5. Metropolis-Hastings for the restricted vector autoregressive parameters β.

1. Form a candidate draw, βnew, using Algorithm 6.
2. Compute the probability of acceptance of a draw:

α(βl−1, βnew) = min
[

p(y|S,P, βnew, σ,R)p(βnew)
p(y|S,P, βl−1, σ,R)p(βl−1)

, 1
]
. (36)

3. Accept βnew if u ≤ α(βl−1, βnew), where u ∼ U[0, 1].

The algorithm has its justification in the block Metropolis-Hastings algorithm of Greenberg & Chib (1995).
The formula for computing the acceptance probability from equation (36) is a consequence of the choice of
the candidate generating distributions. For the parameters β−i, it is a symmetric normal distribution, as in
step 2 of Algorithm 4, whereas βi is determined by a deterministic function.

Algorithm 6. Generating a candidate draw β.

1. Restrict parameter βi to zero. Draw all the parameters (β1, . . . , βi−1, 0, βi+1, . . . , βk)′ according to the
algorithms described in Section 6.5.

2. Compute βi = g(β−i, σ,R,P).
3. Return the vector (β1, . . . , βi−1,g(β−i, σ,R,P), βi+1, . . . , βk)′

7. Granger causal analysis of US money-income data

In both studies focusing on Granger causality analysis within Markov-switching vector autoregressive
models, Warne (2000) and Psaradakis et al. (2005),3 the focus of study is the causality relationship between
U.S. money and income. At the heart of this issue is the empirical analysis conducted in Friedman &
Schwartz (1971) asserting that money changes led income changes. The methodology was rejected by Tobin
(1970) as a post hoc ergo propter hoc fallacy, arguing that the timing implications from money to income could
be generated not only by monetarists’ macroeconomic models but also by Keynesian models. Sims (1972)
initiated the econometric analysis of the causal relationship from the Granger causality perspective. While
a Granger causality study concentrates on forecasting outcomes, macroeconomic theoretical modeling tries
to remove the question mark over the neutrality of monetary policy for the business cycle. The causal

3The total US economic activity is approached from two different perspectives in these papers: Warne (2000) uses monthly income
data, whereas Psaradakis et al. (2005) use quarterly output data.
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relationship between money and income is, however, of particular interest to the econometric debate, since
over the past forty years researchers have not reached a consensus.

This historical debate between econometricians is well narrated by Psaradakis et al. (2005), and the
interested reader is advised to consult this paper for a depiction of events. Without detailing the references
of the aforementioned paper, there is a problem in the instability of the empirical results found for the
causality between money and output. Depending on the samples considered (postwar onwards data, 1970s
onwards data, 1980s onwards, 1980s excluded, etc.), the existence and intensity of the causal effect of money
on output are subject to different conclusions. Hence, the strategy of Psaradakis et al. (2005): to set up a
Markov-switching VAR model that assumes four states of the economy: 1. both variables cause each other;
2. money does not cause output; 3. output does not cause money; 4. none of the variables causes another.

As outlined in the introduction, with the approach of Warne (2000) which we follow, the MS-VAR models
are ’standard‘ ones, and we perform Bayesian model selection through the comparison of their marginal
densities of data, to determine the number of states as well as the number of autoregressive lags. Moreover,
we perform an analysis with precisely stated definitions of Granger causality for Markov-switching models.
In this section, we use the Bayesian testing apparatus to investigate this relationship once again.
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Figure 1: Log-differentiated series of money and income.

Data. The data are identical to those estimated by Warne (2000) and cover the same time period as in the
original paper. Two monthly series are included, the US money stock M1 and the industrial production,
both containing 434 observations covering the period, from 1959:1 to 1995:2, and both were extracted from
the Citibase database. As in the original paper, the data are seasonally adjusted, transformed into log levels,
and multiplied by 1200. Warne (2000) performed Johansen tests for cointegration, and – unlike for level
series – trace statistics indicated no cointegration for differentiated series. Similarly, we work with the first
difference of the series.

The summary statistics of both series are presented in Table 1. Income grows yearly by 3% on average,
with a standard deviation of 11%, which seems a lot, but one has to note that we manipulate the monthly
series for which the rates are annualized. Money has a stronger growth rate of nearly 6% on average, with
a lower standard deviation than the income, below 6%.

Figure 1 plots the transformed series. Observation indicates that at least some heteroskedasticity is
present, as can be seen with the money series, where a period of higher volatility starts around 1980.
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Table 1: Summary statistics

Variable Mean Median Standard Deviation Minimum Maximum

∆y 3.396 4.18 10.99 -51.73 73.72
∆m 5.851 5.24 5.79 -17.39 30.03
Data Source: Citibase.

Table 2: Model selection for VAR(p) – determination of number of lags

Lags 0 1 2 3 4 5 6 7 8
lnMHM -3149.63 -2991.7 -2983.4 -2966.49 -2970.25 -2954.49 -2948.57 -2944 -2939.52

Lags 9 10 11 12 13 14 15 16 17
lnMHM -2936.67 -2941.2 -2917.97 -2916.77 -2917.87 -2926.21 -2923.23 -2930.82 -2936.96

Summary statistics and series observations all seem to indicate the possibility of different states in the
series, in which case MS-VAR models can provide a useful framework for analysis. We, however, start our
analysis with Granger causality testing in the context of linear VAR models.

Granger causal analysis with the VAR model. The reason why we begin by studying Granger causality with
linear models is that we want to relate to the standard methodology, and to illustrate whether a non-linear
approach brings added value to the analysis by comparing the results. Also, the Block Metropolis-Hastings
sampler of Section 6 can easily be simplified to a Block Metropolis-Hastings sampler for VAR models. By
doing so, estimating linear VAR models and comparing marginal densities, we will also compare whether
or not these models are preferred by the data to more complex MS-VAR ones.

We estimate the data with the VAR models for different lag lengths, p = 0, . . . , 17. Each of the Metropolis-
Hastings algorithms is initiated by the OLS estimates of the VAR coefficients. Then follows a 10,000-iteration
burn-in and, after convergence of the sampler, 5000 final draws are to constitute the posteriors. The prior
distributions are as follow:

βi ∼ N(0, 100IN+pN2 )

σi. j ∼ logN(0, 2)
Ri. jk ∼ U(a, b)

for i = 1, . . . ,M and j, k = 1, . . . ,N and a and b as in Algorithm 3.
Table 2 displays the marginal density of data for each model, computed with the modified harmonic

mean obtained by applying formula (32) to the posteriors draws. As in Warne (2000), models with long lags
are preferred. The VAR(12) model, i.e. with 12 lags for the autoregressive coefficients, yields the highest
lnMHM and hence is the model we choose for the Granger causality analysis. Table B.7 in Appendix B
displays, for each parameter of the model, the mean, standard deviations, naive standard errors, autocor-
relations of the Markov Chain at lag 1 and lag 10. Low autocorrelation at lag 10 indicates that the sampler
has good properties.

The set of restrictions to impose on the parameters for vector autoregressive moving average models
were covered in Sims (1972) and Boudjellaba et al. (1992). Translated into the VAR representation, and in
the case of a bivariate VAR(p) model:[

y1,t
y2,t

]
=

[
µ1
µ2

]
+

p∑
i=1

[
A(i)

11 A(i)
12

A(i)
21 A(i)

22

] [
y1,t−i
y2,t−i

]
+

[
ε1,t
ε2,t

]
,
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for t = 1, . . . ,T, the restrictions for money, y2,t, being Granger noncausal on income, y1,t, read:

A(i)
12 = 0 for i = 1, . . . , p.

Note that these restrictions, with assumed normal residual terms, are simultaneously encompassing
Granger noncausality in mean, variance, and distribution.

Table 3: Noncausality and conditional regime independence in a VAR(12) model. Numerical efficiency results for these models are
presented in table C.9 of Appendix C.

M j Hypothesis Restrictions # restrictions ln p(y|M j) lnB j0

H0: Unrestricted model

M0 VAR(12) - 0 -2,916.77 0

H1: Granger noncausality from money to income

M1 (A1) A(i)
12 = 0 p -2,901.63 15.13

for i = 1, . . . , p.

The estimation of the restricted VAR(12) model, with its upper-right autoregressive coefficients A(i)
12 set

to 0 for all lags returns posteriors that yield a lnMHM of -2901.63. Expressed in logarithms, the posterior
odds ratio of the null hypothesis of Granger causality from money to income is equal to 15.13. Table 3
summarizes the results for VAR models. This is a very strong acceptance of the restricted modelM1 over
the nonrestricted oneM0, hence Bayesian testing provides evidence in favor of Granger noncausality from
money to income, within the VAR framework. This result is in line with Christiano & Ljungqvist (1988),
where Granger noncausality from money to output is established for the VAR model with log-differences
with US data. The authors contest this result and argue for a specification error for models with first
differences. We continue our analysis with nonlinear models that allow switches within their parameters.

Granger causal analysis with MS-VARs. We estimate the data MSIAH(m)-VAR(p) models for different number
of regimes M = 2, 3, 4 and different lag lengths, p = 0, . . . , 6. Each of the Block Metropolis-Hastings algorithm
is initiated by the estimates from the EM algorithm of the corresponding model. Then follows a 10,000-
iteration burn-in and, after convergence of the sampler, we sample 5000 final draws from the posteriors.
The prior distributions are as defined in Section 2.

Table 4 reports the lnMHMs for the estimated models with 2 regimes. Though we also estimated models
with 3 or 4 regimes, estimation encountered difficulties of low occurrences of regimes. These phenomena
indicate that the data does not support MS-VAR models with 3 or more regimes, and explains why we only
present results with 2 regimes. The number of estimated lags for the autoregressive coefficients is limited
to 6 lags – less than the 12 lags for VAR models – also due to insufficient state occurrences when the number
of AR parameters increases. The model preferred by the data is the MSIAH(2)-VAR(4), i.e. with 2 regimes
and VAR process of order 4. Table B.8 in Appendix B displays, for each parameter of the model, the mean,
standard deviations, naive standard errors, and autocorrelations of the Markov chains at lag 1 and lag 10.
Decaying autocorrelation between draws indicates that the sampler has desirable properties.

Figure 2 plots the regime probabilities from the selected model. In comparison with the second regime,
the first regime matches times of higher variance for both variables. As well the constant for income growth,
µ1,1, is negative during the occurrences of the first regime. Hence, the first regime can be interpreted as the
bad state of the economy.

Note that comparing the best unrestricted MS-VAR model from Table 4 to the best VAR model of Table 3
(that is to the restricted model) yields a logarithm of the posterior odds ratio of 6.41 in favor of the MS-VAR
model.

Similarly to Warne (2000), we proceed with the analysis of Granger noncausality for the selected
MSIAH(2)-VAR(4) model. The Bayesian testing strategy we employ renders the process straightforward:
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Table 4: Model selection for MSIAH(2)-VAR(p) – determination of the lag order

Lags 0 1 2 3 4 5 6
lnMHM -3,002.64 -2,926.42 -2,903.89 -2,898.21 -2,895.22 -2,914.87 -2,913.49
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Figure 2: Estimated probabilities of regimes for a MSIAH(2)-VAR(4) model

each type of causality implies different restrictions on the model parameters; we impose them, estimate the
models and compute all marginal densities of data. Table 5 summarizes all the sets of restrictions to impose
when testing the noncausality from money to income, and also logarithms of the marginal densities of data
given the model, ln p(y|M j), and logarithms of the Bayes factors, lnB j0 for j = 1, . . . , 7. A positive logarithm
of the Bayes factor is to be interpreted as evidence in favor of the restricted model. In a symmetric way,
negative logarithm of the Bayes factor indicates that the non-restricted model is preferred by the data.

Analysis of Table 5 shows that only modelM5 is more probable a posteriori than the unrestricted model
M0. This model represents one of the sets of restrictions for Granger noncausality in mean. All other
models, however, are less probable than the unrestricted model, which is represented with the negative
values of the logarithms of the Bayes factors.

Table 6 presents a summary of the assessment of the considered hypotheses. We found strong support
for Granger noncausality in mean. This hypothesis has much bigger posterior probability compared to all
other hypotheses, including the unrestricted model. Warne (2000) found a similar result, but holding only
at the 10% level of significance. However, Bayesian testing establishes this strong result, and the conditional
mean of income is invariant to the history of money.

However, when it comes to the regime inference, we find a strong evidence that money play a significant
role in forecasting the state of the economy one period ahead. In Table 6, in the second row, we read that
the hypothesis that the history of money aggregate M1 does not impact on the regime forecast of income
is rejected. It is evidenced by the negative value of Posterior Odds Ratio comparing this hypothesis to the
unrestricted model.

Summary. The results of Bayesian testing for Granger causality from money to input on the US monthly
series covering the period 1959–1995 are in line with the narration of Psaradakis et al. (2005), in the sense
that the strongly established result of noncausality in mean within VAR models (which is equivalent to the
noncausality in variance and in distribution) changes within the MS-VAR models. Allowing non-linearity
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Table 5: Noncausality and conditional regime independence in a MSIAH(2)-VAR(4) model. Numerical efficiency results for these
models are presented in table C.9 of Appendix C.

M j Hypothesis Restrictions # restrictions ln p(y|M j) lnB j0

H0: Unrestricted model

M0 MS(2)-VAR(4) - 0 -2895.22 0

H1: History of money does not impact on the regime forecast of income

M1 (A1) M1 = 1,M2 = 2 µ1,st = µ1,A
(i)
11,st

= A(i)
11,A

(i)
12,st

= 0 3p+4 -2964.72 -69.50
Σ11,st = Σ11,Σ12,st = 0

M2 (A1) M1 = 2,M2 = 1 µ2,st = µ2,A
(i)
21,st

= A(i)
21,A

(i)
22,st

= A(k)
22 , 4p+4 -2921.54 -26.32

Σ22,st = Σ22,Σ12,st = 0,A(i)
12,st

= 0

(A2) M1 = 1,M2 = 2 Always holds, no restrictions - - -
M3 (A2) M1 = 2,M2 = 1 p11 = p21 1 -2907.39 -12.17

H2: Granger noncausality

(A1) or - - - -

M4 (A4) M1 = 1,M2 = 2 µ1,st = µ1,A
(i)
11,st

= A(i)
11,A

(i)
12,st

= 0 3p+1 -2880.63 14.59

M5 (A4) M1 = 2,M2 = 1 p11 = p21,
∑2

j=1 A(i)
12, jπ j = 0 p+1 -2897.24 -2.02

for i = 1, . . . , p.

Note: The derived restrictions are such that ModelM1 is nested within ModelM4. In order to use the Posterior Odds Ratio for the
hypotheses from equation (31), we formally exclude from the parameter space of ModelM4 the point restrictions on the covariance
matrices that characterize ModelM1. This way we subtract from the parameter space a region of zero probability mass, which does
not impact on the posterior simulations.

Table 6: Summary of the hypotheses testing

Hi Hypothesis Represented by models ln Pr(Hi |y)
Pr(H0 |y)

H0 Unrestricted model M0 0
H1 History of money does not impact on the

regime forecast of income
M1,M2,M4 -12.17

H2 Granger noncausality M1,M2,M4,M5 14.59

in the models’ coefficients, here by a Markov chain permitting switches between regimes of the economy,
and testing for causality from money to income yields a different result and the strong non-causal evidence
is decomposed. We found that the history of money helps to predict the regimes of income. However, we
did find evidence for Granger noncausality in mean from money to income, as did Warne (2000).

These findings have particular consequences for the forecasting of the income. Despite the fact that
past information about money does not change the forecast of the conditional mean of income, it is still
crucial for its modeling. Past observations of money improves the forecast of the state of the economy when
modeled with a Markov-switching process. Therefore, if one is interested in forecasting regime switches in
the income equation, then one should add the money variable into the considered system.
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8. Conclusions

The contribution of this paper is the determination of a set of parametric restrictions, both for Granger
causality analysis and for conducting regime inference, within framework of Markov-switching Vector
Autoregressions models. The starting point for these concepts is the one-period ahead forecast errors for
the conditional expectations operator.

It is shown that both Granger noncausality and regime inference are not associated with a unique set
of restrictions on the parameters of the MS-VAR. However, the number of such sets is finite and depends
on the dimension of the observable variable vector and on the number of Markov regimes. Granger
noncausality generally result in some of these sets containing nonlinear restrictions, with the nonlinearity
being dependent on the rank of the matrix with Markov transition probabilities. Moreover, the number of
restrictions actually being tested depends on the rank of this matrix, thereby making these concepts difficult
to deal with in classical testing.

We propose a method of testing the nonlinear restrictions for the hypotheses of Granger noncausality
and for conducting regime inference. The employed Bayes factors and Posterior Odds Ratios overcome the
limitations of the classical approach. It requires, however, an algorithm of estimation of the unrestricted
model and of the restricted models, representing hypotheses of interest. The algorithm we proposed, allows
for the restriction of all the groups of parameters of the model in an appropriate way. It combines several
existing algorithms and improves them in order to maintain the desired properties of the model and the
efficiency of estimation. The estimation method allows us to use all the existing methods of computing of
the marginal density of data that are required for both Bayes factors and Posterior Odds Ratios.

In the empirical illustration of the methodology, we have found that in the USA money does not cause
income in mean. We have, however, found that the money impacts on the forecast of the future state of the
economy. If the empirical analysis is to be something more than just an illustration of the methodology, and
in effect be conclusive, robustness checks are required. In particular, considering more relevant variables
in the system could impact on the conclusions of the analysis of the Granger causality between money and
income.

As the main limitation of the whole analysis of Granger causality for MS-VAR models, we find that
only one-period ahead Granger causality is considered in this study. The conditions for h-periods ahead
noncausality should be further explored. We only mention that potentially establishing that one variable
does not improve the forecast of the hidden Markov process, taking into account the Markov property, may
imply the same for all periods in the future. Still, establishing conditions for the noncausality h-periods
ahead for the autoregressive parameters, including covariances, would potentially require tedious algebra.
This statement is motivated by the complexity of formulating forecasts with MS-VAR models.

This line of research could be extended to other definitions of Granger causality, namely the second
order Granger causality and the Granger causality in distribution. These two forms being more restrictive
than the one we consider, a refined analysis on the causal nature between economic variables could be
proposed.
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Appendix A. Mathematical Appendix: Proofs

Proof of Proposition 1
It is straightforward to show that (A2) implies that there is no information in v2t for predicting s1,t+1 since it implies that
Pr[s1,t+1|yt] = Pr[s1,t+1]. Let us therefore focus on the only remaining possibility, i.e. that Pr[s1,t|yt] = Pr[s1,t|v1,t]. To prove
that condition (A1) is necessary and sufficient for this to hold, we shall proceed in two steps. The first step involves
finding a general condition for predictions of s1,t (and s2,t) to be invariant with respect to alternative information sets. In
the second step we show that when εt|st is Gaussian, then the parameter restrictions in (A1) are necessary and sufficient
for the invariance condition in the first step to be satisfied under the two information sets of interest.

Let ξt|τ( j) = Pr[st = j|yτ,Wτ], where yt is a vector of variables andWτ is the history of an observable vector wt up
to and including period τ. The vector wt can, for example, be defined such that it contains yt−1 and various exogenous
variables observable at time t. Furthermore, let ηt( j) = fy j (yt|st = j,Wt) be the density function for yt conditional on
the state and the history of wt. We stack these functions into M × 1 vectors ξt|τ and ηt, respectively. From e.g. Hamilton
(1994) we have that ξt|t, ξt|t−1, and ηt are related according to:

ξt|t =

(
ξt|t−1 � ηt

)
ı′q
(
ξt|t−1 � ηt

) , t = 1, 2, . . . , (A.1)

while
ξt|t−1 = P′ξt−1|t−1, t = 2, 3, . . . , (A.2)

and ξ1|0 = ρ, a M×1 vector of positive constants summing to unity. Here,�denotes the Hadamard (element-by-element)
product and ıM the M × 1 unit vector.

Let st be represented by two Markov processes, s1,t and s2,t, which are not necessarily independent. Define j such
that j ≡ j2 + M2( j1 − 1) when (s1,t, s2,t) = ( j1, j2), where M1,M2 ≥ 1 and M = M1M2 ≥ 2. Then ξt|τ( j) = ξt|τ( j1, j2) =

Pr[s1,t = j1, s2,t = j2|yτ,Wτ], while ξ(1)
t|τ ( j1) =

∑M2
j2=1 ξt|τ( j1, j2) and similarly for ξ(2)

t|τ ( j2). More compactly, this means that

ξ(1)
t|τ = [IM1 ⊗ ı

′

M2
]ξt|τ and ξ(2)

t|τ = [ı′M1
⊗ IM2 ]ξt|τ. The following result about Hadamard and Kronecker products will prove

useful below:

Lemma 1. If and only if ηt = (η(1)
t ⊗ η

(2)
t ) with η(l)

t being Ml × 1 for l = 1, 2, then(
IM1 ⊗ ı

′

M2

)(
ξt|t−1 � ηt

)
=

([
IM1 ⊗ η

(2)′
t

]
ξt|t−1

)
� η(1)

t , (A.3)

while (
ı′M1
⊗ IM2

)(
ξt|t−1 � ηt

)
=

([
η(1)′

t ⊗ IM2

]
ξt|t−1

)
� η(2)

t . (A.4)

Proof. The j:th element of (ξt|t−1 � ηt) is given by ξt|t−1( j1, j2)η(1)
t ( j1)η(2)

t ( j2). Premultiplying this M× 1 vector by [IM1 ⊗ ı
′

M2
]

we obtain a M1 × 1 vector whose j1:th element is

η(1)
t ( j1)

M2∑
j2=1

ξt|t−1( j1, j2)η(2)
t ( j2).

Now define

γt|t−1( j1) ≡


ξt|t−1( j1, 1)

...
ξt|t−1( j1,M2)

 , j1 = 1, . . . ,M1. (A.5)

Then

γt|t−1( j1)′η(2)
t =

M2∑
j2=1

ξt|t−1( j1, j2)η(2)
t ( j2).

Collecting these results we find that

[
IM1 ⊗ ı

′

M2

][
ξt|t−1 �

(
η(1)

t ⊗ η
(2)
t

)]
=


γt|t−1(1)′η(2)

t
...

γt|t−1(M1)′η(2)
t

 � η(1)
t . (A.6)
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Define the M2 ×M1 matrix γt|t−1 according to γt|t−1 ≡ [γt|t−1(1) · · · γt|t−1(M1)]. It then follows that

γ′t|t−1η
(2)
t =


γt|t−1(1)′η(2)

t
...

γt|t−1(M1)′η(2)
t

 . (A.7)

Moreover, ξt|t−1 = vec(γt|t−1), with vec being the column stacking operator. Next,

γ′t|t−1η
(2)
t =

[
η(2)′

t ⊗ IM1

]
vec

(
γ′t|t−1

)
=

[
η(2)′

t ⊗ IM1

]
KM2 ,M1 vec

(
γt|t−1

)
= KM1 ,1

[
IM1 ⊗ η

(2)′
t

]
ξt|t−1

=
[
IM1 ⊗ η

(2)′
t

]
ξt|t−1,

(A.8)

where Km,n is the mn × mn commutation matrix, Km,1 = Im, and the third equality follows by Theorem 3.9 in Magnus
& Neudecker (1988). Collecting these last results we have established (A.3). The result (A.4) follows by similar
arguments. �

If s1,t and s2,t are independent, it follows that

ξ(1)
t|t−1 =

[
IM1 ⊗ ı

′

M2

][
P(1)′
⊗ P(2)′

]
ξt−1|t−1

= P(1)′ξ(1)
t−1|t−1,

(A.9)

since P(2)ıM2 = ıM2 . Similarly, ξ(2)
t|t−1 = P(2)′ξ(2)

t−1|t−1. However, this does not mean that ξ(1)
t|t−1 and ξ(2)

t|t−1 are independent since

ξ(1)
t−1|t−1 and ξ(2)

t−1|t−1 need not be independent.

Lemma 2. If and only if (i) ηt = ϕt(η
(1)
t ⊗ η

(2)
t ) where ϕt is a scalar and η(l)

t a Ml × 1 vector, (ii) η(1)
t and η(2)

t are vectors of density
functions for independent random variables, and (iii) s1,t and s2,t are independent, then for all t = 1, . . . ,T

ξ(l)
t|t =

(
ξ(l)

t|t−1 � η
(l)
t

)
ı′Ml

(
ξ(l)

t|t−1 � η
(l)
t

) , l = 1, 2, (A.10)

with ξt|τ = (ξ(1)
t|τ ⊗ ξ

(2)
t|τ ), where ξ(1)

t|τ and ξ(2)
t|τ are independent for τ = t, t − 1.

Proof. Note first that ı′M = ı′M1
(IM1 ⊗ ı

′

M2
) = ı′M2

(ı′M1
⊗ IM2 ). For l = 1 we know that ξ(1)

t|t = [IM1 ⊗ ı
′

M2
]ξt|t. From equation

(A.1) we thus have that

ξ(1)
t|t =

[
IM1 ⊗ ı

′

M2

][
ξt|t−1 � ηt

][
ı′M1

(
IM1 ⊗ ı

′

M2

)(
ξt|t−1 � ηt

)]−1

=
[([

IM1 ⊗ η
(2)′
t

]
ξt|t−1

)
� η(1)

t

][
ı′M1

([(
IM1 ⊗ η

(2)′
t

)
ξt|t−1

]
� η(1)

t

)]−1

,

(A.11)

by Lemma 1 and since the scalar ϕt cancels. A similar expression is obtained for ξ(2)
t|t . Let ρ = (ρ(1)

⊗ ρ(2)) where the
elements of ρ(l) are positive and sum to unity. Then

ξ(1)
1|1 =

[(
ρ(1)
⊗ η(2)′

1 ρ(2)
)
� η(1)

1

][
ı′M1

([
ρ(1)
⊗ η(2)′

1 ρ(2)
]
� η(1)

1

)]−1

=
[
ρ(1)
� η(1)

1

][
ı′M1

(
ρ(1)
� η(1)

1

)]−1

,

(A.12)

and similarly for ξ(2)
1|1. By (ii) it follows that ξ(1)

1|1 and ξ(2)
1|1 are independent. Thus, ξ1|1 = (ξ(1)

1|1 ⊗ ξ
(2)
1|1). Moreover, by (iii) we

have that ξ(l)
2|1 = P(l)′ξ(l)

1|1, which are also independent for l = 1, 2. Thus, ξ2|1 = (ξ(1)
2|1 ⊗ ξ

(2)
2|1) and so on for t = 2, 3, . . . ,T,

thereby establishing sufficiency.
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To prove necessity, suppose (i) is not true, i.e., Mi ≥ 2 for i = 1, 2. Let ηt = (η(1)
t ⊗ η

(2)
t ) � ψt, where ψt , (ψ(1)

t ⊗ ψ
(2)
t )

for Ml × 1 vectors ψ(l)
t . Then, for example

ξ(1)
t|t =

[(
IM1 ⊗ η

(2)′
t

)(
ξt|t−1 � ψt

)
� η(1)

t

][
ı′M1

([
IM1 ⊗ η

(2)′
t

][
ξt|t−1 � ψt

]
� η(1)

t

)]−1

,
[([

IM1 ⊗ η
(2)′
t

]
ξt|t−1

)
� η(1)

t

][
ı′M1

([(
IM1 ⊗ η

(2)′
t

)
ξt|t−1

]
� η(1)

t

)]−1

.

(A.13)

The only case when the inequality can be replaced with an equality is if ψt = (ψ(1)
t ⊗ ψ

(2)
t ). Next, if (ii) does not hold,

then for instance ξ(1)
1|1 and ξ(2)

1|1 cannot be independent. Finally, if (iii) does not hold, then ξ(1)
t|t−1 , P(1)′ξ(1)

t−1|t−1 and depends

on ξ(2)
t−1|t−1 as well. Thus, ξ(1)

2|1 and ξ(2)
2|1 cannot be independent even if ξ(1)

1|1 and ξ(2)
1|1 are. �

Assumptions (i) and (ii) in Lemma 2 are useful for the above proof, but can in practise be more conveniently
expressed as restrictions on marginal and conditional densities via the decomposition yt = (v1t, v2t). For all j = 1, . . . ,M
we may express the joint density for yt as

ηt( j) = fy j

(
yt|st = j,Wt

)
= fv1 j

(
v1t|st = j, v2t,Wt

)
fv2 j

(
v2t|st = j,Wt

)
.

This standard decomposition ensures that the densities of interest concern independent random variables and may
therefore be taken as an interpretation of assumption (ii) in Lemma 2 once the conditions that we consider next are met.

To deal with assumption (i) we first of all require that the marginal density for v2t depends only on s2t. That is, for
all j = 1, . . . ,M:

fv2 j

(
v2t|st = j,Wt

)
= fv2 j2

(
v2t|s2t = j2,Wt

)
, j2 = 1, . . . ,M2. (A.14)

Concerning the conditional density for v1t the restrictions can be written as:

fv1 j

(
v1t|st = j, v2t,Wt

)
=

 fv1 j1

(
v1t|s1t = j1,Wt

)
if M2 > 1,

fv1 j1

(
v1t|s1t = j1, v2t,Wt

)
otherwise

(A.15)

for all j1 = 1, . . . ,M1 and j = 1, . . . ,M. In other words, the conditional density for v1t must be such that it does not
depend on s2t. If M2 > 1, then v2t varies with s2t and, hence, the density of v1t must be invariant with respect to v2t. On
the other hand, when M2 = 1, then by (A.14) we have that v2t is invariant with respect to st and is therefore not otherwise
required to be subject to a constraint. The restrictions in (A.14) and (A.15) are more convenient than assumptions (i)
and (ii) when we attempt to determine the restrictions that a specific density function for yt must satisfy.

In fact, the conditions in Lemma 2 have even further implications:

Lemma 3. If and only if the conditions in Lemma 2 are satisfied, then

ξt|τ =
(
ξ(1)

t|τ ⊗ ξ
(2)
t|τ

)
, (A.16)

for all t, τ = 1, . . . ,T, with ξ(1)
t|τ and ξ(2)

t|τ being independent.

Proof. Let us first prove this for all τ < t. We have already established in Lemma 2 that ξ(1)
τ|τ

and ξ(2)
τ|τ

are independent for
all τ. By equation (22.3.13) in Hamilton (1994) we have that ξt|τ = (P′)t−τξτ|τ for τ = 1, . . . , t − 1. By independence of s1,t

and s2,t and of ξ(1)
τ|τ

and ξ(2)
τ|τ

we obtain ξt|τ = [(P(1)′)t−τξ(1)
τ|τ
⊗ (P(2)′)t−τξ(2)

τ|τ
] = (ξ(1)

t|τ ⊗ ξ
(2)
t|τ ), which are thus independent.

To show (A.16) for τ > t it is sufficient to consider τ = T since the algorithm for computing smooth probabilities is
valid for any τ > t. From Kim (1994) (see also (Lindgren, 1978; Hamilton, 1994)) we get

ξt|T = ξt|t �
[
P
(
ξt+1|T � ξt+1|t

)]
, t = 1, . . . ,T − 1, (A.17)

where � denotes element-by-element division. To show that ξt|T = (ξ(1)
t|T ⊗ ξ

(2)
t|T), with ξ(l)

t|T independent for l = 1, 2, we

begin with t = T − 1. By Lemma 2 we have that ξT|τ = (ξ(1)
T|τ ⊗ ξ

(2)
T|τ) for τ = T,T − 1. Accordingly,[

ξT|T � ξT|T−1

]
=

[(
ξ(1)

T|T � ξ
(1)
T|T−1

)
⊗

(
ξ(2)

T|T � ξ
(2)
T|T−1

)]
. (A.18)
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Let ψ(l)
T ≡ P(l)(ξ(l)

T|T � ξ
(l)
T|T−1) for l = 1, 2. We then obtain

P
[
ξT|T � ξT|T−1

]
=

[
ψ(1)

T ⊗ ψ
(2)
T

]
≡ ψT. (A.19)

Hence, ξT−1|T = (ξT−1|T−1 � ψT). With ξ(1)
t|T = [IM1 ⊗ ı

′

M2
]ξt|T it follows by Lemma 1 and Lemma 2 that

ξ(1)
T−1|T =

[(
IM1 ⊗ ψ

(2)′
T

)
ξT−1|T−1

]
� ψ(1)

T

= ψ(2)′
T ξ(2)

T−1|T−1

(
ξ(1)

T−1|T−1 � ψ
(1)
T

)
,

(A.20)

since ξT−1|T−1 = (ξ(1)
T−1|T−1 ⊗ ξ

(2)
T−1|T−1). From the definition of ψ(2)

T we find that

ψ(2)′
T ξ(2)

T−1|T−1 =
(
ξ(2)

T|T � ξ
(2)
T|T−1

)′
P(2)′ξ(2)

T−1|T−1

=
(
ξ(2)

T|T � ξ
(2)
T|T−1

)′
ξ(2)

T|T−1

=

M2∑
j2=1

ξ(2)
T|T( j2).

(A.21)

This is equal to unity and we thus get

ξ(1)
T−1|T = ξ(1)

T−1|T−1 �
[
P(1)

(
ξ(1)

T|T � ξ
(1)
T|T−1

)]
. (A.22)

Proceeding with ξ(2)
T−1|T, the above arguments imply that

ξ(2)
T−1|T = ξ(2)

T−1|T−1 �
[
P(2)

(
ξ(2)

T|T � ξ
(2)
T|T−1

)]
, (A.23)

and, hence, by Lemma 2, ξ(l)
T−1|T are independent for l = 1, 2 and ξT−1|T = (ξ(1)

T−1|T ⊗ ξ
(2)
T−1|T). For the remaining t, backwards

recursions, using the above arguments, implies the result. Necessity follows by the arguments in Lemma 2. �

Notice that condition (i) of Lemma 2 is only sufficient in forecast situations. If st is serially uncorrelated, then
P′ = πı′M, with π being the vector of ergodic probabilities. Accordingly, for all τ < t, ξt|τ = (P′)t−τξτ|τ = π since
ı′Mπ = ı′qξτ|τ = 1. Hence, if s1,t and s2,t are independent and serially uncorrelated, then ξt|τ = (ξ(1)

t|τ ⊗ ξ
(2)
t|τ ) = (π(1)

⊗ π(2)) for
all τ < t.

This completes step one in the proof of Proposition 1. We have established necessary and sufficient conditions for
how the information used to predict st can be split into information valuable for predicting s1,t but not s2,t, and vice
versa, and when information can be “thrown away” without affecting the regime predictions. Note that the conditions
in Lemma 2 are very general in the sense that they apply to any vector of density functions ηt. For example, the
functional form can vary over t as well as over states. The crucial underlying assumption is that st conditional on st−1

is independent of information available at time t − 1. If this assumption is violated, then the algorithms for computing
regime predictions are no longer valid.

The assumption that s1,t and s2,t are independent, in fact, increases the level of generality of the results. For example,
it allows M2 = 1 in which case ηt = ϕtη

(1)
t (with the scalar ϕt being a marginal density which is invariant with respect

to st) is necessary and sufficient for regime predictions based on the vector densities ηt and η(1)
t to be equivalent.

When M1,M2 ≥ 2 we allow for the possibility that two subsystems of the model can contain information for
predicting one independent regime process each but not the other regime process, while a third subsystem is completely
non-informative about regimes. By considering r independent Markov chains, these results can be generalized further.
For our purposes, however, the above results are sufficient.

Now let us return to the MS-VAR with conditionally Gaussian residuals. Here we find that for each j ∈ {1, . . . ,M}
the joint log density is

ln
(
ηt( j)

)
= −

N
2

ln(2π) −
1
2

ln
(
det

[
Σ j

])
−

1
2
ε′t| jΣ

−1
j εt| j, (A.24)

where εt| j = yt − µ j −
∑p

k=1 A(k)
j yt−k. Let n1 and n2 be the number of v1,t and v2,t variables, respectively, with n1 + n2 = N.

The marginal density for v2,t, conditional on st = j and yt−1, is

ln
(
η(2)

t ( j)
)

= −
n2

2
ln(2π) −

1
2

ln
(
det

[
Σ22, j

])
−

1
2
ε′2,t| jΣ

−1
22, jε2,t| j. (A.25)
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If this density is invariant with respect to s1,t, then (a) Σ22,( j1 , j2) = Σ22, j2 , µ2,( j1 , j2) = µ2, j2 , and A(k)
2r,( j1 , j2) = A(k)

2r, j2
for all

j1 ∈ {1, . . . ,M1}, j2 ∈ {1, . . . ,M2}, r ∈ {1, 2}, and k ∈ {1, . . . , p}. For M2 = 1 these restrictions imply that the parameters in
the marginal density for v2,t are constant across states.

Under the restrictions in (a), the density for v1,t, conditional on st = j = j2 + M2( j1 − 1), v2,t, and yt−1, is

ln
(
η(1)

t ( j)
)

= −
n1

2
ln(2π) −

1
2

ln
(
det

[
Σ̃11, j

])
+ ε′2,t| j2 Σ

−1
22, j2

Σ′12, jΣ̃
−1
11, jε1,t| j

−
1
2
ε′1,t| jΣ̃

−1
11, jε1,t| j −

1
2
ε′2,t| j2 Σ

−1
22, j2

Σ′12, jΣ̃
−1
11, jΣ12, jΣ

−1
22, j2

ε2,t| j2 ,

(A.26)

where Σ̃11, j ≡ Σ11, j − Σ12, jΣ
−1
22, j2

Σ′12, j. If this density function is invariant with respect to s2,t for M2 ≥ 2, then (b)

Σ11,( j1 , j2) = Σ11, j1 , µ1,( j1 , j2) = µ1, j1 , and A(k)
1r,( j1 , j2) = A(k)

1r, j1
for all j1 ∈ {1, . . . ,M1}, j2 ∈ {1, . . . ,M2}, r ∈ {1, 2}, and k ∈ {1, . . . , p};

and (c) Σ12, j = 0 for all j ∈ {1, . . . ,M}. Under (i) to (iii) we find that ηt = (η(1)
t ⊗ η

(2)
t ) for all t, with η(l)

t being the marginal
density of vl,t conditional on sl,t and yt−1. If these linear restrictions are not satisfied, then ηt cannot be decomposed into
the (Kronecker) product between a M1 and a M2 vector density. If M2 = 1, then condition (c) can, for now, be dispensed
with.

To satisfy the remaining condition in Lemma 2 we need to let s1,t and s2,t be independent. For M2 ≥ 2 we have that
η(1)

t and η(2)
t are vectors of densities for independent random variables (ε1,t|s1,t and ε2,t|s2,t) from, in particular, restrictions

(c), and for M2 = 1 this is not needed since ϕt is just a scalar which cancels in (A.1). By Lemma 2 it then follows that

Pr
[
st = j|yt;θ

]
= Pr

[
s1,t = j1

∣∣∣v1,t,v2,t;θ1,P(1)
]

Pr
[
s2,t = j2

∣∣∣v1,t−1,v2,t;θ2,P(2)
]
.

When M2 ≥ 2 it also follows that Pr[s1,t = j1|v1,t,v2,t;θ1] = Pr[s1,t = j1|v1,t,v2,t−1;θ1].
The final stage is now straightforward. Since v2,t is assumed to be non-informative about s1,t, the restrictions (c)

must also hold for M2 = 1. Furthermore, we may also infer that: (d) A(k)
12, j1

= 0 for all j1 ∈ {1, . . . ,M1} and k ∈ {1, . . . , p}
and for M2 ≥ 1. Hence, we have shown that

Pr
[
(s1,t, s2,t) = ( j1, j2)

∣∣∣yt;θ
]

= Pr
[
s1,t = j1

∣∣∣v1,t;θ1

]
Pr

[
s2,t = j2

∣∣∣yt;θ2

]
,

implies that (A1) is satisfied. To prove the reverse is straightforward. Q.E.D.

Proof of Proposition 2
Given that ut+1 is mean zero stationary we know that E[u2

t+1;θ] ≤ E[ũ2
t+1;θ] since (v1t,y3t) ⊂ yt for all t. In particular,

E
[
ũ2

t+1;θ
]

= E
[
u2

t+1;θ
]

+ E
[(

E
[
y1,t+1

∣∣∣yt;θ
]
− E

[
y1,t+1

∣∣∣v1t,y3t;θ
])2

;θ
]
. (A.27)

Accordingly, the variances of ut+1 and ũt+1 are equal if and only if E[y1,t+1|yt;θ] = E[y1,t+1|v1t,y3t;θ] for all t.
The prediction of y1,t+1 conditional on yt is given by

E
[
y1,t+1|yt;θ

]
= m̄1,t +

p∑
k=1

(
ā(k)

11,t y1,t+1−k + ā(k)
12,t y2,t+1−k

+ ā(k)
13,t y3,t+1−k + ā(k)

14,t y4,t+1−k

)
.

(A.28)

The necessary and sufficient conditions for this expression to be invariant with respect to y3t are, for all t, given by

(i) m̄1,t = E
[
m1,st+1

∣∣∣∣v1t,y3t;θ
]
,

(ii) ā(k)
1r,t = E

[
a(k)

1r,st+1

∣∣∣∣v1t,y3t;θ
]
, r ∈ {1, . . . , 4} and k ∈ {1, . . . , p},

(iii) ā(k)
13,t = 0, k ∈ {1, . . . , p}.

To prove the claim in Proposition 2 we therefore have to show that (i)–(iii) are equivalent to [(A1) or (A3)].

Noncausality in mean⇒
[
(A1) or (A3)

]
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From the definitions of m̄1,t and ā(k)
1r,t in both of the equations (28) we find that these random matrices can be expressed

as

m̄1,t =

M∑
i=1

M∑
j=1

m1, jpi j Pr
[
st = i

∣∣∣yt;θ
]
, (A.29)

and

ā(k)
1r,t =

M∑
i=1

M∑
j=1

a(k)
1r, jpi j Pr

[
st = i

∣∣∣yt;θ
]
. (A.30)

From these two equations it can be seen that m̄1,t and ā(k)
1r,t depend on t, and thus potentially on y4t, only via the filter

probabilities Pr[st = i|yt;θ].
Suppose first that (m̄1,t, ā

(k)
1r,t) indeed varies with t. It now follows that noncausality in mean implies that

Pr
[
(s1,t, s2,t) = (i1, i2)

∣∣∣yt;θ
]

= Pr
[
s1,t = i1

∣∣∣v1,t;θ
]

Pr
[
s2,t = i2

∣∣∣yt;θ
]
, (A.31)

must hold for all i1, i2, and t, while (m1,( j1 , j2), a
(k)
1r,( j1 j2)) only depends on j2. By Corollary 2 we know that equation (A.31)

can only be satisfied under (A1). The remaining parameter restrictions, pi j = p(1)
i1 j1

p(2)
i2 j2

, are also satisfied under (A1).
Notice that the formulation in (A.31) covers the case when n2 = 1, i.e. when y3t is empty and all auxiliary variables

are located in y2t, as well as the cases when n2 ≥ 2. It is therefore more general than one where Pr[s1,t = i1|v1,t;θ] is
replaced with Pr[s1,t = i1|v1t,y3t;θ].

It remains to examine the case when (m̄1,t, ā
(k)
1r,t) is invariant with respect to t. From equations (A.29)–(A.30) we now

have that
∑M

j=1 m1, jpi j = m̄1,
∑M

j=1 a(k)
1r, jpi j = ā(k)

1r , with ā(k)
14 = 0 for all i, r, and k. Hence, condition (B2) is satisfied.

[
(A1) or (A3)

]
⇒ Noncausality in mean

Evaluating equation (A.28) under (A1) and (A3), respectively, gives the result. Q.E.D.
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Appendix B. Summary of the posterior densities simulations

Table B.7: VAR(12): posterior properties

Mean Std. dev. Naive Std. error Autocorr. lag 1 Autocorr. lag 10

Standard deviations

σ1 9.192 0.137 0.002 0.028 0.006
σ2 4.912 0.095 0.001 0.046 0.002

Correlations

ρ1 -0.025 0.058 0.001 0.060 -0.014

Intercepts

µ1 -0.004 0.300 0.004 0.001 -0.009
µ2 0.582 0.266 0.004 -0.011 0.006

Autoregressive coefficients

A(1)
11 0.284 0.049 0.001 -0.007 0.005

A(1)
12 0.138 0.088 0.001 -0.006 -0.028

A(1)
21 0.027 0.027 0.000 -0.024 -0.016

A(1)
22 0.361 0.049 0.001 0.020 0.027

A(2)
11 0.076 0.049 0.001 -0.009 0.014

A(2)
12 0.108 0.094 0.001 -0.034 -0.014

A(2)
21 -0.044 0.026 0.000 -0.001 0.012

A(2)
22 -0.005 0.052 0.001 0.007 -0.001

A(3)
11 0.068 0.049 0.001 0.002 0.011

A(3)
12 0.133 0.093 0.001 -0.035 0.009

A(3)
21 -0.054 0.026 0.000 -0.014 -0.009

A(3)
22 0.199 0.052 0.001 0.001 -0.001

A(4)
11 0.085 0.049 0.001 0.004 0.009

A(4)
12 -0.053 0.092 0.001 -0.014 -0.008

A(4)
21 -0.024 0.027 0.000 0.012 -0.011

A(4)
22 -0.106 0.051 0.001 -0.026 0.002

A(5)
11 -0.054 0.049 0.001 -0.003 -0.010

A(5)
12 0.032 0.094 0.001 -0.019 -0.010

A(5)
21 0.007 0.026 0.000 0.008 -0.005

A(5)
22 0.228 0.051 0.001 0.004 0.008

A(6)
11 0.004 0.047 0.001 0.000 0.009

A(6)
12 0.106 0.095 0.001 0.009 0.019

A(6)
21 0.000 0.026 0.000 0.004 0.011

A(6)
22 0.067 0.052 0.001 0.008 -0.010

A(7)
11 0.035 0.048 0.001 -0.002 -0.007

A(7)
12 -0.100 0.095 0.001 -0.008 0.003

A(7)
21 0.001 0.025 0.000 0.017 -0.002

A(7)
22 -0.012 0.053 0.001 -0.025 -0.008

A(8)
11 0.031 0.048 0.001 0.035 -0.017

A(8)
12 0.056 0.094 0.001 0.005 -0.005

A(8)
21 0.052 0.025 0.000 -0.015 0.005

A(8)
22 0.104 0.051 0.001 0.011 0.010

A(9)
11 0.015 0.048 0.001 -0.016 0.019

A(9)
12 -0.054 0.093 0.001 0.006 0.004

A(9)
21 -0.043 0.025 0.000 0.016 -0.004
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Mean Std. dev. Naive Std. error Autocorr. lag 1 Autocorr. lag 10

A(9)
22 0.181 0.052 0.001 0.023 -0.012

A(10)
11 0.020 0.047 0.001 0.023 0.020

A(10)
12 0.008 0.090 0.001 0.007 -0.022

A(10)
21 -0.008 0.026 0.000 -0.010 -0.005

A(10)
22 -0.077 0.052 0.001 0.018 -0.012

A(11)
11 0.008 0.048 0.001 -0.017 0.021

A(11)
12 -0.064 0.093 0.001 -0.014 0.001

A(11)
21 -0.036 0.026 0.000 0.007 -0.006

A(11)
22 -0.023 0.052 0.001 -0.022 0.001

A(12)
11 -0.069 0.044 0.001 0.008 0.003

A(12)
12 -0.042 0.087 0.001 -0.031 0.006

A(12)
21 0.061 0.024 0.000 0.010 -0.013

A(12)
22 -0.029 0.049 0.001 -0.004 -0.002

33



Table B.8: MSIAH(2)-VAR(4): posterior properties

Mean Std. dev. Naive Std. error Autocorr. lag 1 Autocorr. lag 10

Transition probabilities

p1,1 0.734 0.066 0.001 0.557 -0.005
p2,1 0.059 0.018 0.000 0.624 0.088

Standard deviations

σ1,1 17.129 1.207 0.017 0.625 0.150
σ2,1 8.746 0.646 0.009 0.559 0.111
σ1,2 6.983 0.276 0.004 0.669 0.173
σ2,2 4.011 0.179 0.003 0.666 0.105

Correlations

ρ1,1 -0.173 0.127 0.002 0.203 0.008
ρ1,2 0.078 0.070 0.001 0.284 0.018

Intercepts regime 1

µ1,1 -0.213 0.949 0.013 0.014 0.032
µ2,1 1.107 0.885 0.013 0.101 0.011

Autoregressive coefficients regime 1

A(1)
11,1 0.497 0.147 0.002 0.128 0.016

A(1)
12,1 0.209 0.287 0.004 0.142 -0.018

A(1)
21,1 0.069 0.075 0.001 0.156 0.027

A(1)
22,1 0.419 0.156 0.002 0.222 -0.002

A(2)
11,1 -0.253 0.191 0.003 0.238 0.020

A(2)
12,1 -0.134 0.361 0.005 0.191 -0.005

A(2)
21,1 -0.018 0.094 0.001 0.131 0.025

A(2)
22,21 -0.092 0.202 0.003 0.237 0.002

A(3)
11,1 0.172 0.218 0.003 0.173 0.001

A(3)
12,1 -0.176 0.376 0.005 0.105 0.008

A(3)
21,1 -0.126 0.122 0.002 0.265 0.006

A(3)
22,1 0.112 0.217 0.003 0.191 0.004

A(4)
11,1 -0.490 0.217 0.003 0.325 0.078

A(4)
12,1 0.409 0.343 0.005 0.164 0.019

A(4)
21,1 0.088 0.106 0.001 0.252 0.029

A(4)
22,1 0.098 0.205 0.003 0.281 0.031

Intercepts regime 2

µ1,2 0.295 0.634 0.009 0.163 -0.005
µ2,2 2.058 0.420 0.006 0.210 -0.012

Autoregressive coefficients regime 2

A(1)
11,2 0.237 0.059 0.001 0.391 0.041

A(1)
12,2 0.028 0.099 0.001 0.333 -0.002

A(1)
21,2 -0.026 0.031 0.000 0.259 0.025

A(1)
22,2 0.398 0.058 0.001 0.297 -0.024

A(2)
11,2 0.130 0.048 0.001 0.210 0.014

A(2)
12,2 0.165 0.088 0.001 0.195 0.013

A(2)
21,2 -0.032 0.028 0.000 0.194 0.005

A(2)
22,2 0.092 0.057 0.001 0.321 0.038
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Mean Std. dev. Naive Std. error Autocorr. lag 1 Autocorr. lag 10

A(3)
11,2 0.099 0.053 0.001 0.377 0.057

A(3)
12,2 0.214 0.086 0.001 0.195 0.006

A(3)
21,2 -0.014 0.026 0.000 0.176 0.023

A(3)
22,2 0.285 0.053 0.001 0.284 0.007

A(4)
11,2 0.106 0.052 0.001 0.394 0.039

A(4)
12,2 -0.174 0.092 0.001 0.272 0.014

A(4)
21,2 -0.019 0.025 0.000 0.200 0.009

A(4)
22,2 -0.066 0.055 0.001 0.323 0.031
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Appendix C. Characterization of estimation efficiency

Table C.9: Characterization of the efficiency in the models’ estimations

RNE Autocorr. lag 1 Autocorr. lag 10 Geweke z-score
M j Median Min Max Median Min Max Median Min Max Median Min Max

Vector autoregressive models

M0 1.00 0.85 1.19 0.00 -0.03 0.06 0.00 -0.03 0.03 -0.10 -2.37 2.38
M1 1.00 0.76 1.08 0.01 -0.03 0.07 0.00 -0.04 0.02 0.07 -2.57 2.43

Markov switching vector autoregressive models

M0 0.48 0.10 1.00 0.24 0.01 0.67 0.02 -0.02 0.17 -0.56 -2.14 3.27
M1 0.47 0.06 1.00 0.17 -0.02 0.78 0.01 -0.03 0.29 0.22 -1.98 2.58
M2 0.71 0.13 1.12 0.14 -0.02 0.71 0.01 -0.03 0.08 0.13 -2.10 1.59
M3 0.30 0.02 0.94 0.27 0.03 0.89 0.04 -0.01 0.56 -0.32 -2.43 1.94
M4 0.46 0.08 0.83 0.25 0.07 0.78 0.01 -0.03 0.23 -0.20 -1.57 1.56
M5 0.22 0.02 0.43 0.44 0.12 0.85 0.07 -0.01 0.50 -0.10 -2.39 2.16

Table C.9 reports statistics for assessing the efficiency of each estimated model. Three types of statistics are presented:
the relative numerical efficiency of Geweke (1989), autocorrelations at different lags, and the convergence diagnostic
of Geweke (1992). Statistics should be presented separately for each parameter of each model, but to save space, we
summarize each model with a median, minimum, and maximum.

The relative numerical efficiency represents the ratio of the variance of a hypothetical draw from the posterior
density over the variance of the Gibbs sampler. Thus, it can be interpreted as a measure of the computational efficiency
of the algorithm. The columns of Table C.9, unsurprisingly, tell us that the algorithm for VAR models is more efficient
than that for MS-VAR. The same observation can be made when comparing unrestricted models with restricted ones.
What is interesting for us is the magnitude of the RNE statistics between unrestricted and restricted models. Those are
comparable, which is a good sign that the algorithm for constrained models are, computationally, reasonable efficient.

The columns displaying the autocorrelations at lag 1 and lag 10 are here to ensure that there is a decay over time.
This is the case here, and the Gibbs samplers explore the entire posterior distribution.

Geweke (1992) introduces the z scores test which tests the stationarity of the draws from the posterior distribution
simulation comparing the mean of the first 30% of the draws with the last 40% of the draws. We compare the two
means with a z-test. Typically, values outside (−2, 2) indicate that the mean of the series is still drifting, and this occurs
for some parameters in each models, exceptM4 andM6 for MS-VARs. Increasing the burn in period might improve
the scores and stationarity of the MCMC chain.
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