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Abstract

This paper proposes a Skewed Stochastic Volatility (SSV) model to model time vary-
ing, asymmetric forecast distributions to estimate Growth at Risk as introduced in
Adrian, Boyarchenko, and Giannone’s (2019) seminal paper ”Vulnerable Growth”.
In contrary to their semi-parametric approach, the SSV model enables researchers
to capture the evolution of the densities parametrically to conduct statistical tests
and compare different models. The SSV-model forms a non-linear, non-gaussian
state space model that can be estimated using Particle Filtering and MCMC algo-
rithms. To remedy drawbacks of standard Bootstrap Particle Filters, I modify the
Tempered Particle Filter of Herbst and Schorfheide’s (2019) to account for stochas-
tic volatility and asymmetric measurement densities. Estimating the model based
on US data yields conditional forecast densities that closely resemble the findings by
Adrian et al. (2019). Exploiting the advantages of the proposed model, I find that
the estimated parameter values for the effect of financial conditions on the variance
and skewness of the conditional distributions are statistically significant and in line
with the intuition of the results found in the existing literature.
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1 Introduction

Non-normality and asymmetric distributions have played a role in economic research for

a long time (see for example Harvey and Siddique (1999), Engle (2011) or Orlik and Veld-

kamp (2014)). Yet, while most research was focused on financial markets, the seminal

paper ”Vulnerable Growth” of Adrian et al. (2019) brought non-normality and asymmet-

ric forecast densities in the spotlight of macro-economists and central banks all around

the world. Borrowing form the Value at Risk approach in financial econometrics, Growth

at Risk seeks to capture asymmetric tail risks to GDP growth conditioned on national

financial conditions and provides policy makers with a risk measure to evaluate economic

stability (Prasad, Elekdag, Jeasakul, Lafarguette, Alter, Feng, Wang, and Gust (2019)).

However, while their original semi-parametric two-step approach is straight forward, it

lacks the possibility to capture the evolution of volatility and skewness in a parametric

form to conduct statistical inference and compare the effects of national financial condi-

tions or other exogenous variables. To capture the stylized facts in the existing literature,

this paper proposes a Skewed Stochastic Volatility (SSV) model where errors follow a

skew Normal distribution (Azzalini (2013)) with the scale and shape parameter modeled

as latent states. Building on established estimation methods for non-linear, non-Gaussian

state space model as well as discrete Stochastic Volatility models with symmetric densi-

ties (see for example Flury and Shephard (2011)), the SSV model can be estimated with

particle filtering methods and Monte Carlo Markow Chain (MCMC) Methods. Taking

into consideration the well-known weakness of standard Bootstrap Particle Filters to be

sensitive to extreme values (Doucet, de Freitas, and Gordon (2001)), I use the Tempered

Particle Filter by Herbst and Schorfheide (2019) to obtain robust estimates of the likeli-

hood and latent states. To reduce the runtime of the estimation I modify the tempering

schedule to take the asymmetry of the measurement density into account. This results in

less tempering iterations. Estimating the model based on US data, I find that the model

can capture the stylized facts by Adrian et al. (2019) and other recent studies such as

delle Monache, de Polis, and Petrella (2021). Furthermore, the results provide further

statistical evidence that national financial conditions have a significant impact on the

shape and scale of the one-period ahead forecasting distribution given the 90% credible

sets obtained from the posterior distribution of the static model parameters. With a cor-
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relation coefficient of -0.41, I find that volatility and skewness have an inverse relationship

indicating that downside risks increase in times of high volatility.

The rest of the paper is structured as follows: Section 2 provides an overview of the

Growth at Risk concept and the methodology developed by Adrian et al. (2019). The

Skewed Stochastic Volatility model and its estimation is introduced in Section 3 and 4

respectively. Section 5 discusses the results for the US. Section 6 concludes.

2 Growth at Risk

The concept of Growth at Risk was introduced with the seminal paper by Adrian et al.

(2019) who analyse the variation of the one period ahead forecast distribution of US GDP

gdpt+1 conditional on the national financial conditions index dubbed nfcit.
1 To gain

information about the time variation the the one-period ahead forecasting distribution

the authors develop a two step semi-parametric procedure. In the first step different

quantiles of the distributions are obtained by running quantile regressions of the form

gdpt+1 = β0 + β1nfcit + εt+1 (1)

where the vector of parameters β = (β0, β1)
′ is chosen to minimize the Koenker Basset

loss (Koenker and Bassett (1978)) defined as

LKB =
∑(

τ · 1(yt+1>x′
tβ)

|yt+1 + x′tβ|+ (1− τ) · 1(yt+1<x′
tβ)

|yt+1 + x′tβ|
)

where 1A denotes the indicator function, xt = (1, nfcit)
′ is the vector of explanatory

variables including an intercept and 0 ≤ τ ≤ 1 indicates the τ th sample quantile. In

a second step, the authors match the predicted 5, 25, 75 and 95 % quantiles from the

regressions to the theoretical moments of the skewed T distribution defined by Azzalini

(2013). The skew density function takes the form

skew T (y|ξ, ω, α, ν) = 2

ω
· t(z|ν) · T (αz|ν + 1) with z =

y − ξ

ω
(2)

1The National Financial Conditions Index is given by the fist principal component of a large number
of financial variables and released by the Chicago Fed.

2



with ξ, ω, α, ν controlling the location, scale, shape and kurtosis of the distribution. Con-

sequently, the resulting densities are quite flexible and not constrained to be symmetric

around the mean. Estimating the model based on US data from the 1980s up to 2017,

Adrian et al. (2019) document the following properties of the one period ahead forecast

distributions:

(1) Lower quantiles of the conditional forecast distribution vary a lot over over time

while the upper quantiles remain relatively stable.

(2) A deterioration of national financial conditions coincides with increases in the in-

terquartile range and decreases the mean.

(3) Distributions are more symmetric in normal times and become left skewed in reces-

sionary periods

Since then, this two-step approach has been applied to analyze time-varying forecast dis-

tributions of European growth rates (de Santis and van der Veken (2020)) or other macroe-

conomic variables such as inflation (López-Salido and Loria (2020)). However, while the

aforementioned methodology is straight forward to implement, its semi-parametric na-

ture has the drawback that it does not provide a clear representation of the evolution

of the time variation in the volatility and asymmetry of the conditional forecast distri-

butions. This prevents to capture the effect of the national financial conditions or any

other explanatory variable a researcher might include on the second and third moment

parametrically. Consequently, it is also not possible to compare and interpret these effects

or conduct statistical inference to determine the relevancy of different variables on dif-

ferent moments of the distributions. To remedy these shortcomings this paper proposes

an alternative modeling approach to measure Growth at Risk using a Skewed Stochastic

Volatility model that can capture all of the above features of the forecast distributions

in a parametric form by providing a law of motion for both volatility and skewness. The

model is estimated using Bayesian Methods which yields posterior distributions of the

parameters to also conduct statistical inference.
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3 Skewed Stochastic Volatility Model

While Adrian et al. (2019) include a simple parametric model that can capture time

variation in the first two moments, the resulting forecast distributions remain symmetric

and Gaussian. Similarly, the work of Carriero, Clark, and Marcellino (2020) who use a

time-varying volatility specification in large Bayesian VAR models can only model time

varying symmetric forecasting densities and is thus constraint to capture only skewness

in the unconditional density. Montes-Galdon and Ortega (2022) introduce an SVAR with

time-varying skew Normal errors, but without including the effect of national financial

conditions on the volatility of the structural errors. Other recent contributions in a uni-

variate framework are delle Monache et al. (2021) who use the Generalized Autoregressive

Score (GAS) Model framework developed by Creal, Koopman, and Lucas (2013) and Is-

eringhausen (2021) who develops a panel model of time varying skewness model for a

number of different countries. Yet, while both approaches are similar in spirit to the

model in this paper, their estimation critically depends on the chosen model specification

and distribution. The score driven approach by delle Monache et al. (2021) relies on the

gradients of the error distribution which makes further adaptations of the model equations

or experiments with other distribution families cumbersome or infeasible while the later

study requires conditional conjugacy of the priors. Furthermore, while the model by Iser-

inghausen (2021) does include national financial conditions, their effect on the volatility of

the forecasting distribution only arises indirectly. The paper also relates to an older strain

of literature such as Hansen (1994) or Engle and Manganelli (2004) that seeks to model

asymmetric densities to obtain estimates of the Value at Risk for financial data. To the

best of my knowledge, this is the first approach estimating skewed conditional densities

using state of the art Particle Filtering techniques in combination with MCMC-Methods.

In contrary to the aforementioned papers, the Skewed Stochastic Volatility model and

the estimation strategy proposed in this paper can capture all features documented by

Adrian et al. (2019) in a straight forward fashion and is quite flexible with regards to

other distributions families and model specifications.

Related to the skew T distribution used by Adrian et al. (2019), the SSV model is based

on the skewed Normal distribution of Azzalini (2013) with a probability density function
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given by

skew N (y|µ, σ, α) = 2√
(2π)σ

e−
(y−µ)2

2σ2

∫ α y−µ
σ

−∞

1√
2π
e

−t2

2 dt (3)

This distribution has two parameters for location (µ) and scale (σ) plus an additional

parameter α that determines its shape. Figure 1 shows how different values for α affect

the skewness of the distribution function. While α < 0 results in a left skewed distri-

bution α > 0 skews the distribution to the right. Setting α = 0 recovers the symmet-

ric Normal distribution. Additionally, the skew Normal distribution can capture excess

Figure 1: Skewed Normal distribution for different values of the shape parameter α.

Notes: Negative values of α tilt the distribution to the left while positive values skew the distribution to
the right. Setting α = 0 yields the standard Normal distribution.

Kurtosis which is a function of the scale and shape parameters as discussed in Azzalini

(2013). Thus, the skewed Normal distribution allows modelling all moments of interest

while maintaining a parsimonious modelling approach. The resulting Skewed Stochastic

Volatility Model (SSV) takes the form

gdpt+1 = γ0 + γ1nfcit + εt+1 with εt ∼ skew N (0, σt, αt) (4)

and

ln(σ2
t ) = δ1,0 + δ1,1nfcit + δ1,2 ln(σ

2
t−1) + ν1,t (5)

αt = δ2,0 + δ2,1nfcit + δ2,2αt−1 + ν2,t (6)
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where ν1,t and ν2,t are assumed to be uncorrelated Gaussian White Noise innovations.

Equations (4) to (6) form a non-linear, non-Gaussian state space model with ln(σt) and αt

as latent states, that can capture all characteristics found by Adrian et al. (2019). Includ-

ing nfcit in both state equations 5 and 6 introduce time variation of the scale and shape

of the forecast distribution that depends on the national financial conditions. Further-

more, the lagged states allow for persistence in the evolution of the state variables. Due

to the increased complexity of the model arising from non-linearity and non-Gaussianity,

the model is estimated with a combination of Sequential and Markow Chain Monte Carlo

methods that are introduced in the next section.

4 Model Estimation

Due to the skew Normal distribution of the forecasting errors as well as the non-linearity

in the state equations, the SSV model forms a non-linear state space model. Therefore,

the states and static model parameters cannot be estimated using Kalman Filtering and

EM-Algorithms that usually provide feasible estimation methods. Yet, non-linear state

space models can feasibly be estimated in a Bayesian setting using a combination of SMC-

Methods such as Particle filters and MCMC-Algorithms such as the Metropolis-Hastings

Sampler (Schön, Lindsten, Dahlin, Wagberg, Naesseth, Svensson, and Dai (2015)). In

particular, Kim, Shephard, and Chib (1998) show that estimation of stochastic volatility

models using a Particle Metropolis Hastings algorithm is straight forward. Given a non-

linear, non-Gaussian state space system consisting of measurements yt and latent states

variables st that evolve according to the densities

yt ∼ p(yt|st) (7)

st ∼ p(st|st−1). (8)

the estimation of the model is divided in two parts: Posterior distributions of the

static model parameters

θ = (δ0, δ1, γ1,0, γ1,1, γ1,2, γ2,0, γ2,1, γ2,2, σν,1, σν,2)

are obtained with a Metropolis Hastings sampler that generates draws from the posterior
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p(θ|y1:T , s1:T ) =
p(y1:T |s1:T , θ)p(s1:T |θ)p(θ)

p(y1:T )
(9)

by constructing a Markov Chain {θi}Ni=1 with stationary distribution equal to the posterior.

Posterior distributions of the time varying model parameters st = (lnσt, αt) are given by

the filtering distribution

p(st|y1:t) =
p(yt|st)p(st|y1:t−1)∫
p(yt|st)p(st|y1:t−1)dst

(10)

with p(st|y1:t−1) = p(st|st−1)p(st−1|y1:t−1) (11)

using a particle filter that sequentially approximates p(st|y1:t) using importance sampling.

Therefore, at each point in time t, M particles consisting of the tuples {sit,W i}Mi=1 are

drawn from a proposal q(st|y1:t). In principle, the proposal can be chosen freely, yet a

convenient choice generates draws based on the mixture density

q(st|y1:t) =
M∑
i=1

Wt−1,ip(st|sit−1) with
M∑
i=1

Wt−1,i = 1 (12)

This choice of proposal yields the standard Bootstrap Particle filter that assigns weights

Wt,i given by

Wt,i =
wt,i∑M
i=1wt,i

with wt,i = p(yt|st,i). (13)

Hence, the particles are resampled proportional to the likelihood of the measurement yt

given the proposed states st,i (Doucet et al. (2001)). Additionally, conditional on some

choice of parameters θ the Particle filter generates an approximation of the likelihood

function L(θ) given by

L(θ) = p(y1:T |s1:T , θ) ≈
T∏

j=1

1

M

M∑
i=1

Wt,i. (14)

that can be embedded in the Metropolis Hastings Algorithm for the static model pa-

rameters. As shown by Andrieu, Doucet, and Holenstein (2010), these Particle MCMC-

Algorithms remain valid such that the distribution of the chain {θi}Ni=1 converges to the

exact posterior p(θ|y1:T , s1:T ), if the likelihood function is approximated using a particle

filter.
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Yet, it has often been pointed out that the proposal distribution given by (12) is not

optimal since it ignores information about the states st contained in yt (see for example

Herbst and Schorfheide (2019)). As argued by Pitt and Shephard (1999), this leads to a

poor approximation of the tails of the filtering distribution. Especially in case of outliers,

most particles that are proposed based on st−1,i will only have a low likelihood of yt.

This results in a poor approximation of the filtering density as only a few particles are

resampled and consequently in a high variance of the weights Wt,i. This phenomenon is

commonly referred to as weight degeneracy (Pitt and Shephard (1999)). Conversely, a

more uniform the distribution of the weights, will lead to a smaller variance and a the bet-

ter approximation of the filtering density. Therefore, the accuracy of the approximation

at time t is gauged by the Inefficiency Ratio given as

Inefft =
1

M

M∑
i=1

(
wt,i

1
M

∑M
i=1wt,i

)2

(15)

where wt,i are the unormalized weights.2 A high inefficiency ratio indicates very uneven

weights, while an inefficiency ratio close to 1 indicates evenly distributed weights.

Since risk analysis is most relevant to accurately capture extreme values, this paper uses

the Tempered Particle Filter introduced by Herbst and Schorfheide (2019) as a more

complex but also more accurate algorithm to improve the estimation of the states and

to obtain a better approximation of the likelihood function for the Metropolis Hastings

step. A comparison of the performance of the Bootstrap and the Tempered Particle Filter

based on simulated data from the SSV model is given in Appendix A.3

4.1 Tempered Particle Filter

In theory, the optimal proposal distribution at time t is given by p(st|yt, st−1), which in

general is not available in closed form.3 Therefore, the Tempered Particle Filter proposed

by Herbst and Schorfheide (2019) adjusts the proposal distribution to the observation yt

using annealed Importance Sampling first proposed by Neal (2001). After updating the

particles {st−1,i, wt,i}Mi=1 from t− 1 to t, the proposed states are evaluated on a sequence

2It can be shown that if one can draw particles from the optimal proposal density p(st|yt, st−1) the
weights become wt,i =

1
M ∀i which gives Inefft = 1

3To be more precise, p(st|yt, st−1) is only available in closed form if the distributions of the measure-
ment and states are conjugate to each other.
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of Nϕ bridge distributions defined as the ”tempered” likelihood function pn(yt|st,i) with

an inflated measurement variance

σ2/ϕn with 0 < ϕn < 1 and lim
n→Nϕ

ϕn = 1.

Thus, initially ”flattening” the bell shape of the normal distribution results in more equal

weights of the particles and decreases the Inefficiency Ratio towards a value r∗ set by the

researcher. Reducing the measurement error variance to its actual level while targeting

a user-defined inefficiency ratio r∗ the proposed states st,i are then sequentially adapted

to the more optimal proposal distribution p(st,i, st−1,i|y1:t) 4. In contrary to Neal (2001),

the tempering schedule is adaptive because at each step ϕn is chosen such that

Ineff(ϕn)− r∗ = 0. (16)

Targeting a lower r∗ will result in a better approximation of the latent states, but comes

at the price of longer run-times and higher computational costs. The adaptive tempering

procedure of Herbst and Schorfheide (2019) is designed with a focus on DSGE Models

with non-linear dynamics but symmetric Gaussian measurement densities.

I modify the adaptive tempering schedule such that the asymmetry of pn(yt|st,i) is taken

into account by additionally varying the asymmetry of the measurement density. Hence,

starting from a symmetric and flat distribution, each tempering step brings the scale and

shape of the measurement distribution closer to the final level. Following the reason-

ing in Herbst and Schorfheide (2019) as the skew Normal distribution converges to the

symmetric Normal distribution for α → 0 this reduces the number of tempering itera-

tions and prevents that particles close to the mode are overweighted. More formally, the

unnormalized weights w̃t,i(ϕ0) are given by

p0(yt|st,i) = skew N (yt|µt, σt,i/ϕ0, ϕ0αt,i)

4This updating requires an additional MCMC-step that mutates states st,i using a Transition Kernel
that is invariant to the distribution pn(st|yt, st−1)
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Given expression (3) and Algorithm 2 in Herbst and Schorfheide (2019), this gives the

following expression for the unnormalized weights for at the nth tempering step

w̃t,i(ϕn) =

(
ϕn

ϕn−1

)2

exp

(
−(ϕn − ϕn−1)(yt − µt)

2σt,i

)2

Λ̃t,i(ϕn) (17)

with

Λ̃t,i(ϕn) =

∫ αt,iϕ
2/3
n

(yt−µt)
σt,i

−∞ exp
(

−t2

2

)
dt∫ αt,iϕ

2/3
n−1

(yt−µt)
σt,i

−∞ exp
(−t2

2

)
dt

(18)

Expression (17) and (18) show that the weights of the skew Normal distribution differ from

a symmetric Normal density by a factor Λ̃ that is greater or smaller than 1 depending on

the sign of αt,i (see Appendix 1 for more details). Figure 2 and 3 illustrate the effect based

on US GDP data. Figure 2 shows how the distribution of the proposed states ln(σ2
i,t) is

adjusted to the measurement in Q2 of 1978. The distribution is mutated from values of

2.04 (left) or 1.41 (right) to a final value of 3.80 to capture the higher risks of an unusually

large upward spike in US GDP observed in the data. While exclusively tempering the scale

of the measurement density takes a total of 10 iterations, also tempering the symmetry

of the requires only 8 tempering steps. Given that the Particle Metropolis Hastings

Algorithm requires N ×M sweeps of the Tempered Particle filter with T ×Nϕ tempering

iterations per sweep, this adjustment decreases the runtime of the algorithm and enables

researchers to improve the accuracy by targeting a lower Inefficiency Ratio r∗. Figure 3

st

0 2 4 6 n0.2 0.4 0.6 0.81.0
0

2000
4000
6000
8000
10000
12000

st

2 0 2 4 6 8 n0.0 0.2 0.40.60.81.0
0

2000
4000
6000
8000
10000
12000

Figure 2: Tempering of the state distributions of ln(σ2
t,i) in 1978 (Q2)

Note: In both cases, the mean of the distribution moves from 2.04 (left) or 1.41 (right) to about 3.80.
However, while tempering only the scale of the distribution (right) results in 10 iterations, tempering the
shape parameter αt,i as well reduces the number of iterations to 8 only steps (left).
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shows the total number of tempering steps for both tempering variants. In line with the

intuition, the number of tempering steps increases during times of higher volatility with

values of subsequent measurements being further apart. The plot shows that starting

from a more symmetric density the filter requires fewer tempering steps with differences

becoming more notable in times of higher volatility.5

1973 1983 1993 2003 2013
0

2

4

6

8

Number of tempering Steps (US Data)
TPF
TPF (adjusting Skewness)

Figure 3: Total number of tempering steps for both tempering variants

Note: In line with intuition tempering steps increase during times of higher volatility. The plot shows
that additionally tempering the shape of the measurement density requires fewer tempering steps.

4.2 Data and Priors

The proposed model is estimated on the same data set as used by Adrian et al. (2019)

with a mixture of uninformative and informative priors on the static parameters. On

the one hand, priors on the parameters of the mean equation are centered at the OLS

estimates of a linear regression of the variable nfcit on gdpt+1. Since the OLS estimator

is equal to the ML-Estimator under the assumption of normally distributed errors, this

reflects the prior believe that neither time-varying skewness nor volatility are present. On

the other hand, priors on the parameters of the state equations are diffuse to be identified

by the data Table 2 in A.2 gives a comprehensive overview of the prior specification of

5A simulation exercise based on 500 runs of both also yielded that including the symmetry of the
measurement distribution in reduces the number of tempering steps by about 25%.
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the static parameters as well as the data. The Tempered Particle Filter is run using

M = 40000 particles with a targeted Inefficiency ratio r∗ = 1.2 and 2 mutation steps in

each tempering iteration. Draws for the static model parameters are generated using a

standard Random Walk proposal with four chains ran in parallel on the HPC-Cluster at

the Freie Universität. To increase the efficiency of the Metropolis Hastings algorithm the

constrained model parameters δ1,2 and σνi are mapped to the real line using the following

transformations

δ1,2 = tanh(ψ) ∈ [−1, 1] (19)

σνi = exp(ξi) ∈ R+ (20)

As described in Schön et al. (2015) this requires to correct the original priors of δ1,2 and

σνi for the Jacobians of the inverse functions based on the change of variables rule.

d tanh−1(ψ)

dψ
=

1

1− ψ2
and

d log(ξi)

dξi
=

1

ξi

to obtain samples from the transformed target distribution of

θ̃ = (γ0, γ1, δ1,0, δ1,2, δ2,0, δ2,1, ψ, ξ1, ξ2) ∈ R.

The posterior distributions of the original model parameters can then be recovered using

Equation (19) and (20). To further improve the mixing properties of the chains an initial

estimate of V ar(θ̃) = Ω is obtained based on a pre-run of 5000 draws. The proposal

variance is scaled to target an acceptance ratio between 20% and 30%.

5 Results

Table 1 presents the estimates for the static model parameters based on the Particle

Metropolis Hastings approach described in the previous section. With an impact of about

-0.7 on the mean (γ0), 0.39 on the scale (δ1,1) and -0.42 on the shape (δ2,1) of the fore-

casting distribution of the one-period ahead US-GDP growth rate, the impact of national

financial conditions is in line with the findings of Adrian et al. (2019). As financial condi-

tions deteriorate, the expected growth rate decreases while the interquartile range as well

12



Model Parameter Mean SD q05 q95

γ0 2.217 0.335 1.69 2.799
γ1 -0.695 0.236 -1.125 -0.351
δ1,0 1.295 0.385 0.784 2.06
δ1,1 0.388 0.139 0.197 0.647
δ1,2 0.292 0.198 -0.106 0.556
δ2,0 0.401 0.305 0.904 0.649
δ2,1 -0.429 0.226 -0.81 -0.038
σν1 0.451 0.119 0.298 0.688
σν2 0.533 0.182 0.319 0.877

Table 1: Posterior Means, Standard deviations (SD) and 90% credible sets of the static
model parameters

Notes: The model was estimated using N = 20000 draws of the Particle Metropolis Hastings Algorithm.
The first half of the sample was discarded as burn in. The model specification containing a lagged value
of αt in the state equation for the shape parameter was strongly rejected against a model specification
without an AR(1) term based on a Bayes Ratio of 200.004. Marginal Data Densities were estimated using
the modified harmonic mean estimator (Geweke (1999))

as downside risks to GDP-growth increase. Furthermore, all three coefficients are signifi-

cantly different from zero based on the 90 % credible set constructed from the posterior

draws. Additionally, Figure 4 shows the sample approximations and prior distribution of

the parameters of the mean equation γ0 and γ1 as well as the parameters that capture

the effect of the nfcit variable on the shape and scale of the forecasting distribution. All

posteriors are well-behaved, uni-modal and clearly centered away from zero. Additionally,

the upper two panels show that the mode of the posterior distributions is different from

the OLS estimates that the priors are centered on. The effect of the national financial con-

ditions index is dampened compared to the estimated values under symmetric, normally

distributed errors hinging to the fact that some variation is captured by the contempora-

neous effect of national financial conditions on the skewness of the distribution. The same

holds for the intercept, which is also smaller then its OLS counterpart. With a value of

approximately -0.4 the absolute effect of nfcit on the shape is only marginally larger than

on the volatility. The estimates for the variances of the innovations of the state equations

indicate that there also seems to be more uncertainty in the evolution of the asymmetry

compared to the volatility of the forecasting distribution.

Figure 9 shows the filtered states given the mean estimates of the static model param-

eters. The sharp increase in volatility and downside risk in the 1980s as well as during the

financial crises in 2009 is well captured by the evolution of the two latent states. These
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Figure 4: Posterior Distributions obtained using the Particle MCMC Algorithm

Posterior distributions for the parameters of the mean equation γ0 and γ1 as well as the parameters that
capture the effect of the nfcit variable on the scale (δ1,1) and shape (δ2,1). All posteriors are well-behaved,
uni-modal and clearly centered away from zero with coefficients significantly different from zero based
on the 90 % credible set constructed from the posterior draws. The grey dashed lines indicate the prior
distributions.

findings confirm the results by Adrian et al. (2019) and show that the proposed model is

able to replicate the stylized facts given in section 2. However, even though the distribu-

tion is more symmetric in normal times, the estimated state of αt even exhibits positive

skewness in times of moderation. This is in line the results of delle Monache et al. (2021)

who find evidence for a cyclical behavior of the shape of the one-step ahead conditional

forecasting distribution of US GDP growth with positive skewness in expansionary periods

and negative skewness during recessions. Furthermore, the filtered states exhibit a strong

inverse behavior with periods of high volatility coinciding with an increase in downside

risk. This complementary behavior of the two states is further illustrated by ?? that shows

the negative correlation between the two filtered series with an estimated correlation co-

efficient of -0.41. Eventually, Figure 7 shows the resulting forecasting distributions of the

estimated model with the lower and upper 5% and 25% quantiles. The effect of the strong

increase in the scale and shape parameters during the Great Recession as well as during
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Figure 5: Filtered states obtained with the Tempered Particle Filter

The filter is tuned to target an Inefficiency Ratio of r∗ = 1.2, 2 Mutation steps and M = 40000 particles.
The posterior means in Table 1 are used for the static model parameters.
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Figure 6: Scatterplot of the time-varying scale and shape parameter

Notes:The negative correlation of -0.41 is clearly visible. This implies that increases in volatility occurs
with an increase in downside risks implied by left-skewed distributions.

the Oil Crises in the 1970s and 80s is clearly visible in the behavior of the lower quantiles.

The distributions show a very similar behavior with stable upper quantiles while the lower

quantiles vary significantly over time. Hence, the Skewed Stochastic Volatility Model is

not only well suited to appropriately capture all the features described by Adrian et al.

(2019), additionally providing statistical insights and parameter estimates that are in line

with economic intuition as well as with the existing literature.
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Figure 7: The one-step ahead forecasting distribution for one-quarter ahead GDP growth

Notes: Lower and upper 5% and 25% percent quantiles display the same characteristics as found by Adrian

et al. (2019). While the upper quantiles remain relatively stable, the lower quantiles vary strongly over

time indicating increased downside risk to GDP growth in times of financial distress.

6 Conclusion

This paper investigates the possibilities of Skewed Stochastic Volatility models as an al-

ternative method to perform Growth at Risk Analysis as introduced by Adrian et al.

(2019). To capture the features of the one-period ahead conditional forecast distribu-

tions, I propose a Skewed Stochastic Volatility model that allows researchers to estimate

and conduct statistical inference on the estimated parameters to determine and to test

the effects of financial conditions or other exogenous driving variables on the first three

moments of the conditional forecast distribution of future GDP growth. The resulting

state space model is non-linear with non-Gaussian errors and can be estimated with SMC

and MCMC Methods. I obtain robust estimates of the model likelihood and the evolu-

tion of the latent states, using the Tempered Particle Filter introduced by Herbst and

Schorfheide (2019). I modify the adaptive tempering schedule proposed by the authors to

account for the asymmetry in the error distribution of the measurement equation. This

reduces the number tempering steps to save computational time while achieving the same

accuracy in the estimation of the states and likelihood function. Estimating the model

based on US data yields conditional forecast densities that closely resemble the findings

16



by Adrian et al. (2019). Exploiting the advantages of the proposed model, I find that

the estimated parameter values for the effect of financial conditions on the variance and

skewness of the conditional distributions are significant and in line with the intuition of

results found in the existing literature.
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A Appendix

A.1 Inefficiency Ratio given a skew Normal

From Herbst and Schorfheide (2019), the weights wi
t(ϕ0) for 0 < ϕ0 ≤ 1 are given by the

tempered likelihood function evaluated at the states st,i

p0(yt|st,i) =
2ϕ

1/2
0√

2πσt,i
exp

(
−ϕ0(yt − µt)

2

2σ2
t,i

)∫ αt,iϕ
1/2
0

(yt−µt)
σt,i

−∞
exp

(
−t2

2

)
dt. (21)

Given the annealed importance sampling method described in Neal (2001) and Algorithm

2 by in Herbst and Schorfheide (2019), the expression of the unnormalized weights wi
t(ϕn)

are defined as the ratio of the bridge distributions

wt,i(ϕn) =
pn(yt|sit)
pn−1(yt|sit)

(22)

Using expression (3) for the density of the skew normal distribution yields

wt,i(ϕn) =

(
ϕn

ϕn−1

)1/2

exp

(
−(ϕn − ϕn−1)(yt − µt)

2

2σ2
t,i

)∫ αt,iϕ
1/2
n

(yt−µt)
σt,i

−∞ exp
(

−t2

2

)
dt∫ αt,iϕ

1/2
n−1

(yt−µt)
σt,i

−∞ exp
(−t2

2

)
dt

(23)

Expression (17) shows that in comparison to normally distributed measurement errors,

the weights of the skew normal errors are scaled by a factor

Λt,i(ϕn) =

∫ αt,iϕ
1/2
n

(yt−µt)
σt,i

−∞ exp
(

−t2

2

)
dt∫ αt,iϕ

1/2
n−1

(yt−µt)
σt,i

−∞ exp
(−t2

2

)
dt

(24)

Additionally tempering the symmetry of the skew normal distribution modifies this factor

to

Λ̃t,i(ϕn) =

∫ αt,iϕ
2/3
n

(yt−µt)
σt,i

−∞ exp
(

−t2

2

)
dt∫ αt,iϕ

2/3
n−1

(yt−µt)
σt,i

−∞ exp
(−t2

2

)
dt

 < 1 if αt,i < 0

> 1 if αt,i > 0
∀ 0 > ϕn > 1. (25)
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Inequality (25) holds since ∫ x

−∞
exp

(
−t2

2

)
dt

is monotonically increasing in x on a range from 0 to
√
2π (for a proof see for example

(Blum, Hopcroft, and Kannan (2020))) and the condition that ϕn > ϕn−1.

The tempering schedule is adaptive since in each iteration, solving the equation

M∑
i=1

 exp
(

−(ϕn−ϕn−1)(yt−µt)
2σt,i

)2
Λ̃t,i(ϕn)∑M

i=1 exp
(

−(ϕn−ϕn−1)(yt−µt)
2σt,i

)2
Λ̃t,i(ϕn)


2

− r∗ = 0. (26)

provides a new value for ϕn.
6

A.2 US Data and Priors
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Figure 8: US GDP and National Financial Conditions Index.

The sampling frequency for both series is quarterly and the sample ranges from 1973 Q1 to 2016 Q2.

6Using (21), it can be shown that for a model with stochastic volatility, the lower bound on r∗ for
ϕ0 → 0 is given as

lim
ϕ0→0

Ineff(ϕ0) =

1
M

∑M
i=0

(
1

σi,t

)2
(

1
M

∑M
i=0

1
σi,t

)2 > 1
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Model Parameter Distribution Param 1 Param 2

γ0 N 2.1 0.5
γ1 N -1.18 0.5
δ1,0 N 0 5
δ1,1 N 0 5
δ1,2 U -1 1
δ2,0 N 0 5
δ2,1 N 0 5
σν1 IG 3 6
σν2 IG 3 6

Table 2: Priors for the static model parameters in the Metropolis Hastings Algorithm.

N denotes normal priors with Param 1 and Param 2 giving mean and variances, U denotes uniform priors

with Param 1 and Param 2 for the upper and lower bound. IG denotes the inverse Gamma distribution

with Param 1 and Param 2 for α and β.

A.3 Bootstrap Particle Filter vs. Tempered Particle Filter
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Figure 9: Mean Squared Errors of the filtered states

Mean Squared Errors are calculated based on 500 simulations obtained with the Bootstrap Particle Filter
and the Tempered Particle Filter. Tuning parameters of the Tempered Particle Filter were set to target
an Inefficiency Ratio of r∗ = 1.2, 2 Mutation steps and M = 40000 particles. The superior performance
of the Tempered Particle Filter is clear from the mean and standard errors of the distributions.
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