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Abstract 

I suggest a model to research standard diffusion and path dependence in networks of actors (e.g. 
organizations, organizational units) adopting technologies. The model includes several existing models 
as special cases. It should enable exploring path dependence in greater detail. The model distinguishes 
between three phases. First, it looks at standard diffusion in a static network. It afterwards simulates 
the – potentially path-dependent – growth process. Then path-breaking or -reinforcing interventions in 
the structures of the network take place. The model sets itself apart from other models by having 
different forms of network initialization and network growth strategies. First experiments show that I 
can replicate several existing path dependence models, e.g. Arthur’s canonical model, as a special 
case. This builds confidence in the models’ validity. Along the way, I constructed a flexible simulation 
laboratory ready-to-use for other path dependence researchers. Future directions are described. 

Keywords: Path Dependence, Standard Diffusion, Path-Breaking Interventions, Switching Costs, 
Agent-based Simulation, Network-Theoretic Models 

1. Introduction and Motivation 

I wish to suggest a new (general) model to research standard diffusion and path dependence in 
networks of actors adopting standards. The model was constructed with the airline industry in mind 
where actors manifest in organizations and links may be thought of as codeshare interactions or 
alliance memberships. The model includes several existing models in the context of path dependence 
research as special or limiting cases and should thus enable to explore path dependence phenomena in 
greater detail. It distinguishes strictly between three phases. First, it looks at standard diffusion in a 
static network. Then, it simulates the network growth process. Finally, interventions in the structures 
of the network take place. Interventions may occur while the network grows or after it has settled. 

Existing path dependence models limit attention to N - the size of the network (cf. Afuah 2013). 
Arthur’s model of path dependence and increasing returns (1989) for instance holds that new agents 
become influenced by all N existing agents. I refer to these models as N-type models. Furthermore 
many models (e.g. Weitzel et al. 2006; Petermann 2010; Draisbach et al. 2012) neglect growth 
processes. They assume static networks. Bringing together standard diffusion in static networks and 
network growth and stretching the limitations of  N-type models, I construct a new model drawing on 
an agent-based simulation approach (cf. Gilbert and Troitzsch 2010) and models from network 
analysis (cf. Jackson 2008). In contrast to N-type models, network analysis highlights interaction 
structures among agents (nodes) to explain phenomena on the macro level. Building on this approach, 
the proposed model incorporates different forms of network initialization and network growth 
strategies. 

Practical importance is highlighted by inertia overcoming established technical standards in the airline 
industry. One example is booking classes in airline pricing and distribution – a parameter supporting 
airlines’ profit-oriented revenue management strategies. The booking class standard has enabled 
airlines to develop advanced pricing strategies (cf. Talluri and van Ryzin 2005). A limitation to 26 
discrete booking classes has, however, today become serious limitation for many traditional network 
carriers (cf. Isler and D’Souza 2009). Moves to alternative pricing strategies – e.g. dynamic pricing 
(cf. Levin et al. 2009) –, are drawn back by high switching costs and coordination problems (cf. 
Westermann 2013). The paper aims to facilitate a better understanding of path building and 
intervention processes in settings with complex interaction structures as illustrated by the airline 
industry. This intends to inform management thinking in situations with locked in standards. 

This paper proceeds as follows: I build the blocks of the model in sec.2. Then I present first results 
from experiments focusing on the role of interaction structures in growing networks on standard 
diffusion (sec.3). I end with concluding remarks and future research directions (sec.4). 
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2. The Model 

The initial (static) network consists of a fixed set of n nodes (e.g. organizational units, organizations) 
and links between those nodes. Links represent business interactions exhibiting a positive externality 
to adopt the same technologies. One may think of codeshares or alliance memberships in the airline 
industry.  

The network structure is generated using different standard network types as depicted in Figure 1. For 
instance, I initialize the network using a lattice (cf. Figure 1A) or a star structure (cf. Figure 1B). For 
concreteness, a lattice may be thought of as an organization having decentralized structures because 
each node depends only on m direct neighbors. In contrast, in a star network each node links to one 
central node. A star network may be thought of as a network with a large “core” organization 
surrounded by many smaller “peripheral” organizations, each of which is linked to the core 
organization. This emulates e.g. the network of airline reservation systems. Other standard network 
types include static random networks (cf. Figure 1D), ring networks (cf. Figure 1C), small world (cf. 
Figure 1E) or preferential attachment networks (cf. Figure 1F). 

 

Figure 1 Different types of initial networks with nodes (dotes) and links (lines) 

2.1 Standard Diffusion in Static Network 

The generated network simulates an initial standardization diffusion process (cf. Botzem and Dobusch 
2012: 745), which occurs in a network of fixed size. One may think of a “shadow of the past” and 
different models may be able to explain standard diffusion in this initial network. In what follows I 
adapt a model of Tim Weitzel and colleagues (2006). By replicating their model published in a highly 
ranked IS journal, I aim to gain validity. The process reflects the agents balancing of the utility from 
the standardization versus the standardization costs (cf. Buxmann et al. 1999; Weitzel et al. 2000).  

The model proceeds as follows: Each agent decides locally if she should standardize. That is, she 
standardizes only if her utility from the standardization outweighs the standardization costs. Given that 
an agent generally concludes that it is beneficial for her to standardize, she will select one of q 
technologies with the highest (real) value. In general, q can take any discrete number of technologies 
but for reasons of simplicity I restrict the following analyses to two technologies (A and B).  

Agent i standardizes only if the payoff Ei > 0. Costs Ki are assigned to nodes. The utility cij is tied to 
the edge ij  between node i and j. The binary variable xj indicates whether both partners in a network 
standardize and thus realize the benefit from the standardization. Equation 1 captures this core idea: 

�� = ∑ ����	��		(�) ∗ �� − ��			���ℎ			��� > 0																			                      (1) 

Where cij is the utility of agent i to standardize with agent j, which is realized if and only if j also 
standardizes (indicated by xj) minus the standardization costs Ki for node i. Note that the benefit cij is 
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summed over all neighbors j of i in the network N(g). For reasons of simplicity without losing 
generality I assume that cij = cji. Standardization pays off for both partners equally. Thus, I proceed 
with an undirected in contrast to a directed network (cf. Weitzel et al. 2006: 494).  

Figure 2 gives a two-agent example. If both agents decide according to Equation 1, agent 1 favors 
standardization as her expected payoff exceeds her standardization costs by 7.5 units (17.5 – 10 = 7.5 
units). Agent 2, in contrast, is not willing to standardize as her costs exceed her benefits (17.5 – 20 = – 
2.5 units). The benefit is only realized if both agents standardize. If, in contrast, one agent remains 
non-standardized, the network looses the 5 potential units net benefit [35 (= 17.5 x 2) – 30 (= 20 + 10) 
= 5 units]. 

 

Figure 2 Two-agent example adapted from Weitzel et al. (2006: 494) 

In non-pre-standardized networks it turns out that agents can only decide on standardization if they 
know what the others will do. Agents have to build expectations on the other agents possible decisions 
(cf. Arthur 1989). In the model each agent therefore determines an expected value Expected [Ei]. The 
agent now standardizes if Expected [Ei]  > 0. She incorporates each partners’ standardization costs Kj, 
number of partners ϕj, and standardization utility with her cji in a probability pij that replaces the binary 
variable xj. Equation 2 describes this expanded reasoning: 

��������[��] = ∑ ��� ∙ ����	��		(�) − ��			���ℎ	��� = ��� ∙!�"#�
�� ∙!�

$									 (2) 

%. �.			���, ��� > 0			 
Organizations can identify their business partners’ parameters orders of magnitude as expert 
interviews with airline IT managers suggest. 

So far, I modeled the nodes’ binary (yes or no) decision to standardize. To model multi-standard 
problems, the agents’ decision function from Equation 2 is extended as follows: 

��������[��(] = ∑ ��� ∙!�"#�)
�� ∙!�

$ ∙ ����	��		(�) − ��(							                       (3) 

Where q denotes the technology and Kiq the standardization costs for agent i. Kjq is the standardization 
costs for agent j for technology q. Since standardization costs vary across technologies, one can think 
of these standardization costs as different efforts to get rid of legacy applications, data and practices 
when implementing the new standard (cf. Weitzel et al. 2006: 495). One can determine realized (ex-
post) saving by extending Equation 1 respectively. 

To initialize the simulation, standardization costs Ki are assigned to nodes with a random normally 
distributed probability (i.e. a mean µ(K) and a standard deviation σ(K)). The utility from the 
standardization cij is assigned random and normally distributed across nodes (with µ(c) and σ(c)). As a 
result of this initial standardization, agents decide in favor of one technology. Agents may switch in a 
multi-standard situation as agents gain confidence in their neighbors actual choices (cf. Weitzel et al. 
2006: 495). Figure 3 shows the standardization outcome for three example networks1. Figure 3A 
depicts a lattice, where agents standardize almost equally to technology B and A. In Figure 3B, a star 
network, agents favor technology A. In contrast, the random network depicted in Figure 3C shows a 
mixed outcome. I find increasing the ratio of standardization costs to standardization benefit causes a 

                                                      
1 All examples where generated with a network of 24 agents, q=2, µ(K)=4, σ(K)=0.5, µ(c)=7, σ(c)=0.5, λ= 0.25. 
The parameter λ is a link probability necessary to generate static random networks (cf. Jackson 2008: 78) 

1 2

K2=20K1=10

c12 = c21 = 17.5
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standardization gap where agents will not standardize despite the global efficiency of standardization 
(cf. Weitzel et al. 2006: 500). I also observed that increasing the standardization costs’ standard 
deviation σ(K) resulted in a larger technological variety to co-exist. 

While the model is subject to network externalities (i.e. each node is influenced by its neighbor’s 
state), nodes will not accumulate information over time. Agents build new expectations each period 
regardless of the state in t-1. No feedback from learning occurs (cf. Arthur 1994). I extend the model 
now by bringing in network growth processes because they are a natural way to model positive 
feedback. In addition, I later create memorizing agents as another way to model positive feedback (see 
section 2.5). 

 

Figure 3 Standard diffusion outcome. In the cases, nodes either standardize to  
A (red balls) or B (blue balls) 

2.2 Network Growth 

To model network formation – how new nodes enter the network and connect to others – I construct a 
simple growth process: Each tick (or simulation period) one new node enters. The new node then 
connects to m pre-existing nodes. Growth is an important process in any organizational setting. Often 
times, complementary elements thereby tend to cluster together more and more closely (David 1994). 
One may think of the airline industry where an alliance entry is an important moment of technological 
choice. Airlines often have to replace or adapt existing technologies as illustrated by Air Berlin joining 
Oneworld. 

In contrast to N-type models, I introduce three network formation processes introducing procedures for 
how new nodes attach to a selected fraction of existing nodes (cf. Jackson 2008: 124-140): (i) uniform 
randomness, (ii)  preferential attachment, and (iii)  a hybrid model. Uniform randomness means that a 
new node picks m other nodes uniformly at random (cf. Jackson 2008: 124-130). Preferential 
attachment, in contrast, prefers nodes that are already well-connected (cf. Jackson 2008: 130 et seq.). 
The rich get richer. Each new node forms links to m partners with probabilities proportional to their 
degree. Under preferential attachment, more nodes with a high degree form than may be expected for 
uniform randomness and more nodes with a low degree. The degree distribution displays “fait tails” 
(Barabasi and Albert 1999).  

Hybrid models span between uniform at random and preferential attachment models. They were 
developed as degree distributions and other characteristics of many empirical networks lie somewhat 
in between the former two models (cf. Jackson 2008: 134). I draw on a model by Jackson and Rogers 
(2007). The core idea is that a fraction of nodes is picked uniformly at random and another via 
searching neighborhoods of friends. The model proceeds as follows: Each new node links to a fraction 
of nodes she knows from random meetings (parent nodes) and then befriends with friends of the 
parents nodes2. The algorithm first picks a nodes uniformly a random (as depicted in Figure 4A) then 
it begins to look at the friends and picks 1 - a neighbors of the friends (cf. Figure 4B). A parameter α 
(0 < α < 1) controls the proportion of random vs. network-based meetings. 

                                                      
2 This resembles a typical process in social networks where you first get to know some group members by pure 
chance and then you will get to know their friends and also befriend with them 

A B C



5 
 

So far, I considered the level of integration as an absolute number of link partners m. This reflects new 
nodes having limited and fixed capacities to connect to pre-existing nodes. A relative fraction m, in 
contrast, scales with the number of nodes in the network. It is one in a full-density network where each 
new node connects to all other nodes. Such formation process characterizes, for instance, Brian 
Arthur’s (1989) path dependence model among others (cf. Afuah 2013). This fact points to the 
possibility of considering Brian Arthur’s model as extreme case of this more general model. 

 

Figure 4 Hybrid network formation process. Random meetings (dotted lines) find an initial number of 
friends (on the left) and network-based meetings (dashed lines) pick friends of friends (on the right). 

I observe that hybrid models fit structures of empirical IT networks well. A pre-study at a recycling 
company builds confidence in the fact that hybrid models can possibly match data of real-world degree 
distributions, densities, clustering coefficients and average path lengths. In the example, nodes 
represented information systems and links represented flows of information. The simulation data fitted 
structural characteristics of the network – consisting of 212 nodes and 234 edges – as degree 
distribution, average path length or clustering coefficients. 

Strategic agents: I now turn to technology adoption choices of new nodes. In the model new nodes 
assess a technologies’ perceived quality (or base utility) and network externalities (cf. Arthur 1989). 
The perceived quality bqtype is exogenous and depends on the agent’s type. Each agent type holds 
different lists of technology preferences. Network externalities weight the number of like-minded 
partners with the effect strength. Equation 4 shows an agent i’s technology adoption function: 

*�( = +(,-./ + 1�(,-./ ∗ ∑ �(�	��		(�) 								���ℎ		� ∈ 30,15, +	 ≥ 0						               (4) 

Where the binary variable xq is one if i’s partner has adopted technology q (and zero otherwise). I sum 
over i’s partners to determine an agents’ externalities (cf. Draisbach et al. 2012). If j includes all other 
nodes except i the model resembles Arthur’s model (cf. 1989).  

2.3 Measuring Lock-Ins 

What is the probability of an existing node to re-orientate? What is her ease to switch technologies? 
The answer depends particularly on how many neighbors of a given node adopt the same technology. 
That is, how homogeneous is a nodes’ neighborhood. The measure is normalized by dividing it by the 
total number of neighbors j. Homogeneity h for node i is then given by Equation 5: 

ℎ� = ∑ 7�)�	 8	9(:)
� 													���ℎ		� ∈ 30,15	;1�	0 ≤ ℎ ≤ 1												 (5) 

Where xj denotes a binary variable that is one if a neighbor also uses technology q (and zero 
otherwise). The homogeneity is one if i’s neighbors entirely uses technology q.  In contrast, hi is 0 if 
none of i’s neighbors implements the same technology. To determine the overall homogeneity in the 
network, I simply average the homogeneity over all the nodes as shown in Equation 6: 

= = ∑ > 	 8	9(:)
� 								���ℎ	0 ≤ ℎ ≤ 1																																																	 (6) 

Where h is again the heterogeneity of node i and n is the node count. Figure 5 shows homogeneity 
examples. Figure 5A is heterogeneous as each node is surrounded by neighbors of different quality. 

A B
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Under positive network effects the networks will not be stable as nodes will revise their decision in 
favor of their peers. Figure 5B shows a homogeneous network where each node is surrounded by 
neighbors of the same quality. If nodes experience positive feedback from their neighbors, the 
configuration is supposed to remain stable. The Figure 5C network also displays strong homogeneity. 
But instead of having a single technology regime two technologies govern different clusters. 
Supplementary diffusion curve analysis (cf. Arthur 1989) is necessary to separate Figure 5B and C. 

 

Figure 5 Homogeneity measure for different simple examples 

2.4 Interventions 

So far, I initialized a network and grew it. I brought everything together to achieve emergent effects. 
Intervention experiments now aim to extend our understanding on path-breaking and -reinforcement. I 
conceptualize three intervention types: 

• Implantations of new network structures 
• Infections inside of a grown network structure 
• Environmental dynamics 

First, I implant new external structures into the network. I vary the number of nodes. New network 
components, consisting of several interlinked nodes, enter the network and put stress on the current 
network configuration. These new structures may utilize existing technologies or bring in new 
technologies. One may think of an airline joining a strategic alliance. Alliance members may already 
employ their own technological standard, which may coerce the local airline to adapt its own IT 
infrastructure. Basically, this extends the simple growth process described earlier. I expect interesting 
nonlinear effects as implanting components that are internally homogeneous could result in a sudden 
passing of threshold levels. The network maybe bifurcates and tips towards a technology.  

Second, I infect nodes inside a given network structure. Then I observe how changes in the network 
propagate and when and where agents switch to another technology. Once an infection is triggered, it 
results in large ripple effects over the entire network. I propose a propagation algorithm that proceeds 
as follows (see Appendix I for pseudo code snippet): One of the nodes with a maximum degree3 (i.e. 
based on the count of link neighbors) is picked as infection target. All first-order neighbors of the node 
– within a distance of one step - are stored in a ‘neighbor list’. They are marked as ‘reached’ and it is 
checked whether these nodes benefit from switching their technology. The switching calculus is 
explained below (see section 2.5). Next, all first-order nodes perform a further, radial search. 
Basically, the simulation creates a ‘waiting list’ with all second-order neighbors. This new list replaces 
the existing ‘neighbor list’. It is processed in the next simulation round in the same way. This radial 
search is continued until no unreached neighbors remain. The propagation algorithm results in a 
(radial) cascade triggered by the infected node over the entire (reachable) network, i.e. first, second, 
third, n-th order neighbors.  

Third, I dynamize the environment. I incorporate environmental changes by manipulating the agents’ 
(technological) preferences. Qualities of technologies change as a function of time. One may think of 
S-shaped technology maturity curves (cf. Frenken et al. 2012).  

                                                      
3 Alternative infection targets may be nodes with a high betweeness or eigenvector centrality (cf. Jackson 2008) 
or “peripheral” nodes. Similarly, Weitzel et al. ( 2006: 507) reason that large players may standardize anyway 
and pre-standardization efforts should thus target small players as they are more susceptible to infections. 
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2.5 When Do Agents Switch? 

I conceptualize two opposing forces when agents consider changing their technological orientation: 
Gains in utility from a new technology promote agents to switch but switching costs counteract. A 
fine-grained model of switching incorporates the following parameters: 

• the quality or base utility of the (new) technology,  
• the (positive) network externalities an agent receives from its neighbors, 
• an agents’ accumulated switching costs and 
• switching costs from an agents’ network embeddedness.  

Equation 4 already specified the first two, utility-driven parameters – quality of the technology b and 

network externalities nwq * ∑ �(�	��		(�) . I thus concentrate on the switching costs – the later two 
parameters of the agent’s switching calculus. I suggest an endogenous, dynamic model. In the (static) 
model of standard diffusion (see Equation 1 – 3), I assumed exogenous standardization costs. They 
became assigned to nodes randomly normally distributed. I expand this notion by assuming that nodes 
memorize. In a simplest possible case4 the specific switching costs depend on the number of periods a 
node has already chosen a solution. One can think of this memory as the amount of legacy functions, 
applications and data an organization has accumulated that “lock in” the capability (cf. Ross et al. 
2006: 50). Consider in this connection a list that holds node i’s and j’s memory:  

i: [B, B, B, B, B, B, B, B, B]  
j: [A, A, A, A, A, B, B, B, B] 

 
The accumulated switching costs KM sum over the memory items and pick out the incompatible ones. 
If for instance, i reasons to switch from B to A, she must cope with a serious B legacy when migrating 
to A. In contrast, j faces fewer barriers to switch to A as she already accumulated A-items before. 

In addition to accumulated switching costs, I also consider switching costs from agents’ network 
embeddedness. System embeddedness is a key driver for delayed information systems discontinuance 
decisions (cf. Furneaux and Wade 2011). Switching costs often arise because of potential 
incompatibilities for working with a new technology (cf. Greenstein 1997) and costs for switching 
interfaces to other applications (cf. for ERP projects Beatty and Williams (2006)). I assume that 
interface-related switching costs depend on the number of neighbors that are currently on the same 
technology as node i. As costs to interface often explode with the number of interfaces (cf. 
Schneberger and McLean 2003), I assume that embeddedness costs KN increase quadratically with the 
number of (legacy) neighbors.  

Altogether, Equation 7 shows when an agent i switches based on the previous considerations: 

?�( = *�( − @ ∑ �A(B −,,CD
D
E F ∑ �G(BE																																							�	��		(�) (7) 

���ℎ		�A,�G	 ≥ 0			;1�	0 ≤ @, F	 ≤ 1 

Where Uiq is the utility an agent gains from the technologies quality and the network effects (see 
Equation 4). The later cost function has two components (KM and KN). KM¬q is the number of legacy 
applications and functions accumulated on the existing (not the new) technological platform. As 
shown above, each node holds a memory to record its history. KM is the sum of this memory over the 
simulation time t. Legacy costs occur only if an entry of i’s memory is not on the new technology q. I 
used a negation operator (¬) to indicate that fact. KN denotes the costs from the network 
embeddedness. It sums over the neighbors that are not on the new technology. I included α and β for 
scaling purposes only. I used a linear-quadratic cost function (cf. Ballester et al. 2006) in which the 
legacy costs KM scale linearly with time but interface costs KN scale quadratic with the number of 
neighbors on another technological platform. I did so for the reasons mentioned above. Agents switch 
if S > 0 to the technology q with the highest switching payoff. 

                                                      
4 Advanced memory modeling includes e.g. discounting and forgetting (cf. Gilbert and Troitzsch 2010) 
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3. First Results 

Focusing on the role of different interaction structures (m) in growing networks on standard diffusion, 
I conducted experiments with a prototypical implementation of the model in Netlogo 5.0.3 including 
the (new) network extension.  

Figure 6 shows outcomes of hybrid random growth processes with varied levels of integration5 m and 
α = 0.1. The network is concentrated for high levels of integration (cf. Figure 6C). The network is lose 
for low levels of integration (cf. Figure 6A and Figure 6B). In all cases, the network shows strong 
homogeneity as may be expected under positive feedback. Homogeneity decreases for higher levels of 
integration but peaks again for a full-density network. The result of a u-shaped homogeneity curve 
(see Table 1) may be explained by the fact that for small levels of integration (m= 1) agents have little 
variety in their neighborhood. They solely depend on one friend and its technology choice. For 
medium levels of integration agents experience larger variety in their circle of friends. In contrast, 
positive feedback in a strongly integrated network counteracts. Degrees of freedom decrease as most 
friends adopt similar technologies. For medium levels of integration, it can be observed that the 
random network growth process results in different technologies thriving in different clusters6 (cf. 
Figure 6A, B and C). The full-density network of Figure 6D shows a homogeneous network that 
entirely dominated by a single technology. This extreme case simulates a path dependent process (cf. 
Arthur 1989). Table 1 shows a more detailed analysis of the outcomes by averaging the results from 
different networks over ten runs per parameter. 

 

Figure 6 Hybrid network with different levels of integration (after 100 ticks) 

Table 1 Averaged results over 10 simulation runs per parameter 

 Clustering-
Coefficient 

Average Path 
Length 

Diffusion win. 
technology (in %) 

Homogeneity 

m=1 0,02 5,86 71% 0,98 
m=3 0,64 3,43 81% 0,87 
m=10 0,54 2,20 77% 0,81 
m=full 0,91 1,02 95% 0,98 

 

Figure 7 illustrates results of first interventions. After I grew the network for 100 ticks7, I implanted a 
new technology (C) into the network. Agents continued to decide as described in Equation 4. In Figure 

                                                      
5 Each simulation was initialized with a static random network with n = 10, λ = 0.35, an initial standard 
diffusion process as described in footnote 1, a hybrid random growth process with varying m’s, q=2, two types 
of agents, symmetric base preferences of b=(0.9 0.1) (0.9 0.1) and network magnifiers of (0.8 0.4) (0.4 0.8) 
6 Note that the clustering coefficient is close to zero for m=1 (cf. Table 1) because the clustering coefficient is 
based on a nodes’ number of triangles. No triangles are present before m ≥ 2. 
7 The simulation was initializes using the following parameters: Static random network with n = 10, λ = 0.35, an 
initial standard diffusion process as described in footnote 1, a hybrid random growth process with m=2, α = 0.5, 
q=2, one type of agents with bq= (0.6 0.6) and network magnifiers of (0.4 0.4) 
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7A, technology C was supposed to be twice as attractive as technology A and B (thus, base 
preferences of agents were 0.6, 0.6 and 1.2). The magnitude of network effects was identical across all 
technologies (i.e. 0.4, 0.4 and 0.4).  

 

Figure 7 Introducing a new technology with different utilities in a grown network  

As shown in the diffusion plot of Figure 7A, technology C does not gain considerable momentum. 
Only few instances decide in favor of the new technology. This result may be expected as only new 
nodes that are not coerced by two neighbors of the same technology experience enough degrees of 
freedom to select technology C. Figure 7B, in contrast, shows considerable dynamics towards the new 
technology. In the example, I further increased C’s attractiveness. Agents now find technology C three 
times as attractive as A and B (i.e. bC = 1.8). New nodes migrate to C completely as their own utility 
from the new technology is higher than the costs of overcoming the prevalent network effects. 

4. Concluding Remarks 

I presented a new (general) model to research standard diffusion and path dependence in networks of 
organizations adopting technologies. I breed an artificial “in-vitro” network and penetrate it 
rigorously. To summarize briefly, the model sets itself apart from previous models by having different 
forms of network initialization and network growth strategies. First experiments (see Table 1) show 
that several existing path dependence models, e.g. Arthurs model (cf. 1989), can be reproduced as 
special or limiting cases of the model. In this way I aim to build confidence in the models’ validity. As 
a byproduct, I constructed a flexible laboratory ready-to-use for other path dependence researchers. 

I acknowledge that the experimental setup and the simulation results are yet limited. Focusing on the 
role of interaction structures in growing networks on standard diffusion, the model shows that growth 
processes will influence standard diffusion. Arthur’s model – where one standard dominates an entire 
network of agents – is certainly an extreme case. Other settings will exhibit higher levels of diversity, 
e.g. islands of shared technologies. In addition to carrying out systematic interventions (see section 
2.4), I see five particularly promising ways to proceed further: First, expanding the analysis to more 
than two technologies is a natural next step. Do findings differ in quality in contrast to the simple 
case? The possible outcomes of the arising heterogeneity are yet hard to foresee. This presents 
interesting challenges for future research.  

Second, another next step may be to replicate the polya-urn experiments (cf. Arthur 1994: 7). Thereby, 
the probability of drawing a ball of a particular color depends on the systems’ current state. My 
simulation environment should be equipped to reproduce the models’ findings. Another area of 
replication is the unified model of standard diffusion (cf. Weitzel et al. 2006). Further research may 
show in more detail the existence of a “standardization gap” (see section 2.1). This must include 
solving the linear program on the standardization problem in the investigated networks.  

Third, additional research may enhance the random network growth process (see section 2.2) towards 
a strategic network formation process (cf. Jackson 2008: 153 et seq.). Strategic network growth 
models provide answers to why networks take particular forms, rather than just how they take these 
forms. This would include explicitly modeling the costs and benefits that arise from various networks 
(ibid: 153). New nodes may base their decision on which links to form not only on pure chance but on 
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a deliberate choice of which pre-existing nodes are attractive technology partners. This could exhibit 
interesting nonlinear features and resemble empirical technology diffusion curves.  

Forth, expanding the homogeneity measure (see section 2.3) to sub clusters of the network is an 
interesting conceptual challenge. The data suggests situations with strong homogeneity in sub clusters 
without strong overall homogeneity. When and where is path dependence local? Diagnosing such 
situations will profit from advanced clustering procedures such as k-means and by identifying the 
number of clusters and their internal homogeneity automatically.  

Fifth, changes in technological networks propagate because ripple effects are promoted by “cascades 
of complementarities” (cf. Dobusch 2010) or “ramified webs of externalities” (Ciborra et al. 2000: 2). 
Thereby stronger integration of nodes may favor contagion (cf. Aral et al. 2009: 21545), probably in a 
nonlinear way (cf. Elliott et al. 2012). I concentrated on the (sole) number of links to model integration 
(see section 2.4 and 2.5), but there are certainly other possibilities. Future research could especially 
consider the strength of integration. This presents interesting challenges.  
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Appendix 

Appendix 1 Algorithm for propagating changes through the network. Note that I did not include the 
procedure for checking whether all nodes lie in the giant component and several technical commands  
To propagate-changes 

if t = 0 [ 
set lst-radius[] 
ask one-of turtles with [count link-neighbors = max-degree] 
[  

set reached? true 
let i 0 
while [i < count (nw:turtles-in-radius 1)] 
[ 

set lst-radius lput (item i (sort nw:turtles-in-radius 
1)) lst-radius 
set i i + 1 

] 
set t t + 1 

] 
] 
if t > 0 
[ 
      let x 0 
      while [x < length lst-radius] 
      [ 
        ask item x lst-radius  

 [  
set reached? true  
check-switching 

 ] 
        set x x + 1  
      ] 
      ifelse any? turtles with [not reached?] 
        [ set lst-radius radial-search lst-radius ] 
        [ show "no more neighbors!" ] 
      set t t + 1 

]  
] 

end 
 
To radial-search [my-list] 
   let wait-lst[] 
   let j 0 
   while [j < length my-list] 
   [ 
       ask item j my-list [ 
         let k 0 
         while [k < count nw:turtles-in-radius 1] 
         [            
           if not [reached?] of item k sort nw:turtles-in-radius 1 
           [ 
             set wait-lst lput (item k sort nw:turtles-in-radius 1) wait-lst 
           ] 
           set k k + 1     
       ]] 
       set j j + 1 
   ]] 
   report wait-lst 
end 
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