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Abstract

| suggest a model to research standard diffusiah gath dependence in networks of actors (e.g.
organizations, organizational units) adopting tetbgies. The model includes several existing models
as special cases. It should enable exploring pgpleredence in greater detail. The model distingsishe
between three phases. First, it looks at standiffusidn in a static network. It afterwards simést
the — potentially path-dependent — growth proc€ken path-breaking or -reinforcing interventions in
the structures of the network take place. The maed& itself apart from other models by having
different forms of network initialization and netvkogrowth strategies. First experiments show that |
can replicate several existing path dependence Isjodg. Arthur's canonical model, as a special
case. This builds confidence in the models’ validitiong the way, | constructed a flexible simubati
laboratory ready-to-use for other path dependeesearchers. Future directions are described.

Keywords Path Dependence, Standard Diffusion, Path-Bregakitierventions, Switching Costs,
Agent-based Simulation, Network-Theoretic Models

1. Introduction and M otivation

I wish to suggest a new (general) model to reseatahdard diffusion and path dependence in
networks of actors adopting standards. The modsl eamstructed with the airline industry in mind
where actors manifest in organizations and links/ be thought of as codeshare interactions or
alliance memberships. The model includes seveiatieg models in the context of path dependence
research as special or limiting cases and shoulsl ¢hable to explore path dependence phenomena in
greater detail. It distinguishes strictly betwebree phases. First, it looks at standard diffusioa
static network. Then, it simulates the network groprocess. Finally, interventions in the strucsure

of the network take place. Interventions may oaehite the network grows or after it has settled.

Existing path dependence models limit attentiorNte the size of the network (cf. Afuah 2013).
Arthur's model of path dependence and increasitgrme (1989) for instance holds that new agents
become influenced by aN existing agents. | refer to these modeldNatype models. Furthermore
many models (e.g. Weitzel et al. 2006; Petermant02@raisbach et al. 2012) neglect growth
processes. They assume static networks. Bringigether standard diffusion in static networks and
network growth and stretching the limitations Nftype models, | construct a new model drawing on
an agent-based simulation approach (cf. Gilbert @&rmlitzsch 2010) and models from network
analysis (cf. Jackson 2008). In contrastNdype models, network analysis highlights interacti
structures among agents (nodes) to explain pheremenhe macro level. Building on this approach,
the proposed model incorporates different formsnetwork initialization and network growth
strategies.

Practical importance is highlighted by inertia ammning established technical standards in thenairli
industry. One example is booking classes in airfirieing and distribution — a parameter supporting
airlines’ profit-oriented revenue management stjigee The booking class standard has enabled
airlines to develop advanced pricing strategies Tefluri and van Ryzin 2005). A limitation to 26
discrete booking classes has, however, today besemeus limitation for many traditional network
carriers (cf. Isler and D’Souza 2009). Moves temative pricing strategies — e.g. dynamic pricing
(cf. Levin et al. 2009) —, are drawn back by highitshing costs and coordination problems (cf.
Westermann 2013). The paper aims to facilitate #Hebeunderstanding of path building and
intervention processes in settings with complexergxttion structures as illustrated by the airline
industry. This intends to inform management thigkim situations with locked in standards.

This paper proceeds as follows: | build the blookshe model in sec.2. Then | present first results
from experiments focusing on the role of interatt&tructures in growing networks on standard
diffusion (sec.3). | end with concluding remarksl dnture research directions (sec.4).



2. The Modd

The initial (static) network consists of a fixed s€n nodes (e.g. organizational units, organizations)
and links between those nodes. Links represennéssiinteractions exhibiting a positive externality
to adopt the same technologies. One may think désloares or alliance memberships in the airline
industry.

The network structure is generated using diffestamdard network types as depicted in Figure 1. For
instance, | initialize the network using a latt{cé Figure 1A) or a star structure (cf. Figure 1Bdr
concreteness, a lattice may be thought of as aantgtion having decentralized structures because
each node depends only ondirect neighbors. In contrast, in a star netwakhenode links to one
central node. A star network may be thought of aseawork with a large “core” organization
surrounded by many smaller “peripheral” organizadio each of which is linked to the core
organization. This emulates e.g. the network dfn@rreservation systems. Other standard network
types include static random networks (cf. Figurg,ihg networks (cf. Figure 1C), small world (cf.
Figure 1E) or preferential attachment networksFajure 1F).

Figure 1 Differenttypes of initial networks with nodes (dotes) amdksi (lines)

2.1 Standard Diffusion in Static Networ k

The generated network simulates an initial staridation diffusion process (cf. Botzem and Dobusch
2012: 745), which occurs in a network of fixed si@me may think of a “shadow of the past” and
different models may be able to explain standaffiglon in this initial network. In what follows |
adapt a model of Tim Weitzel and colleagues (20B§)replicating their model published in a highly
ranked IS journal, | aim to gain validity. The pess reflects the agents balancing of the utilioynfr
the standardization versus the standardizatiors ¢o6tBuxmann et al. 1999; Weitzel et al. 2000).

The model proceeds as follows: Each agent decofesly if she should standardize. That is, she
standardizes only if her utility from the standaedion outweighs the standardization costs. Gitxah t
an agent generally concludes that it is benefitoalher to standardize, she will select oneqof
technologies with the highest (real) value. In gehg can take any discrete number of technologies
but for reasons of simplicity I restrict the followy analyses to two technologiesgndB).

Agenti standardizes only if the paydf > 0. Cost¥; are assigned to nodes. The utilifyis tied to

the edgaj between node andj. The binary variable; indicates whether both partners in a network

standardize and thus realize the benefit from tdwedardization. Equation 1 captures this core idea:
El' =2jinN(g)Cij*xj_Ki with Cij >0 (1)

Wherec; is the utility of agent to standardize with agent which is realized if and only if also
standardizes (indicated ) minus the standardization costsfor nodei. Note that the benefd; is
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summed over all neighbolsof i in the networkN(g). For reasons of simplicity without losing
generality | assume tha} = c;. Standardization pays off for both partners equaillyus, | proceed
with an undirected in contrast to a directed nekwof. Weitzel et al. 2006: 494).

Figure 2 gives a two-agent example. If both ageetside according to Equation 1, agent 1 favors
standardization as her expected payoff exceedsthedardization costs by 7.5 units (17.5-10=7.5
units). Agent 2, in contrast, is not willing to stiardize as her costs exceed her benefits (1706=—2
2.5 units). The benefit is only realized if botheats standardize. If, in contrast, one agent resnain
non-standardized, the network looses the 5 potamtits net benefit [35 (=17.5x2) -30 (=200) 1

= 5 units].

Cip=Cp=17.5

Figure 2 Two-agent example adapted from Weitzel et al. (2d98)

In non-pre-standardized networks it turns out dmgnts can only decide on standardization if they
know what the others will do. Agents have to beikppectations on the other agents possible decisions
(cf. Arthur 1989). In the model each agent therefdetermines an expected vakipected [H. The
agentnow standardizes Expected [g > 0. Sheincorporates each partners’ standardization dgsts
number of partnerg,, and standardization utility with herin a probabilityp; that replaces the binary
variablex. Equation 2 describes this expanded reasoning:

3 C.i.(p._K.
Expected[E;] = Xjinn(g) Pij * Cij — Ki withpj = (#> 2)

Cji®Pj
s.t. Cij’ Cji >0

Organizations can identify their business partngratameters orders of magnitude as expert
interviews with airline IT managers suggest.

So far, | modeled the nodes’ binary (yes or no)iglec to standardize. To model multi-standard
problems, the agents’ decision function from Equaf is extended as follows:

Expected[Ejq] = X in N(g) (%) " ¢ij — Kig ©)
Whereq denotes the technology aKg the standardization costs for agerK, is the standardization
costs for agent for technologyg. Since standardization costs vary across techisdpgne can think

of these standardization costs as different effiartget rid of legacy applications, data and pcadti
when implementing the new standard (cf. WeitzedleR006: 495). One can determine realized (ex-
post) saving by extending Equation 1 respectively.

To initialize the simulation, standardization cokisare assigned to nodes with a random normally
distributed probability (i.e. a mean(K) and a standard deviatio®(K)). The utility from the
standardizatiom; is assigned random and normally distributed acnostes (withu(c) andg(c)). As a
result of this initial standardization, agents dedin favor of one technology. Agents may switclain
multi-standard situation as agents gain confidendieir neighbors actual choices (cf. Weitzel let a
2006: 495). Figure 3 shows the standardizationaoéc for three example netwotkdrigure 3A
depicts a lattice, where agents standardize alewpsdlly to technology B and A. In Figure 3B, a star
network, agents favor technology A. In contrasg, tandom network depicted in Figure 3C shows a
mixed outcome. | find increasing the ratio of stamlization costs to standardization benefit caases

L All examples where generated with a network oagdntsg=2, u(K)=4, o(K)=0.5, 1(c)=7, o(c)=0.5, A= 0.25.
The parametex is a link probability necessary to generate staticlom networks (cf. Jackson 2008: 78)



standardization gap where agents will not standardespite the global efficiency of standardization
(cf. Weitzel et al. 2006: 500). | also observedt timzreasing the standardization costs’ standard
deviationa(K) resulted in a larger technological variety to cesex

While the model is subject to network externalities. each node is influenced by its neighbor’s
state), nodes will not accumulate information otmere. Agents build new expectations each period
regardless of the state in t-1. No feedback froanniemg occurs (cf. Arthur 1994). | extend the model
now by bringing in network growth processes becahsy are a natural way to model positive
feedback. In addition, | later create memorizingrag as another way to model positive feedback (see
section 2.5).

Figure 3 Standard diffusion outcome. In the cases, nodasrestandardize to
A (red balls) or B (blue balls)

2.2 Network Growth

To model network formation — how new nodes enterrttwork and connect to others — | construct a
simple growth process: Each tick (or simulationig# one new node enters. The new node then
connects ton pre-existing nodes. Growth is an important proégesmy organizational setting. Often
times, complementary elements thereby tend toarlusgether more and more closely (David 1994).
One may think of the airline industry where anaaltie entry is an important moment of technological
choice. Airlines often have to replace or adapsting technologies as illustrated by Air Berlinfjimig
Oneworld.

In contrast td\-type models, | introduce three network formatioogesses introducing procedures for
how new nodes attach to a selected fraction otiagi:iodes (cf. Jackson 2008: 124-14@))uniform
randomnesg(ii) preferential attachment, arii) a hybrid model. Uniform randomness means that a
new node picksm other nodes uniformly at random (cf. Jackson 20084-130). Preferential
attachment, in contrast, prefers nodes that aeadyrwell-connected (cf. Jackson 2008: 130 et seq.)
The rich get richer. Each new node forms linksntpartners with probabilities proportional to their
degree. Under preferential attachment, more nodiasarhigh degree form than may be expected for
uniform randomness and more nodes with a low deg@ree degree distribution displays “fait tails”
(Barabasi and Albert 1999).

Hybrid models span between uniform at random arefepential attachment models. They were
developed as degree distributions and other clarsits of many empirical networks lie somewhat
in between the former two models (cf. Jackson 2038). | draw on a model by Jackson and Rogers
(2007). The core idea is that a fraction of nodepicked uniformly at random and another via
searching neighborhoods of friends. The model mdsas follows: Each new node links to a fraction
of nodes she knows from random meetings (parenes)odnd then befriends with friends of the
parents nodésThe algorithm first picks nodes uniformly a random (as depicted in Figure #h

it begins to look at the friends and picks aneighbors of the friends (cf. Figure 4B). A paréene

(0 <a < 1) controls the proportion of random vs. netwbased meetings.

2 This resembles a typical process in social netsariere you first get to know some group membersurg
chance and then you will get to know their frieattsl also befriend with them



So far, | considered the level of integration asbsolute number of link partnars This reflects new
nodes having limited and fixed capacities to cohmegre-existing nodes. A relative fractiom in
contrast, scales with the number of nodes in thwark. It is one in a full-density network wherecha
new node connects to all other nodes. Such formgbimcess characterizes, for instance, Brian
Arthur's (1989) path dependence model among otleftsAfuah 2013). This fact points to the
possibility of considering Brian Arthur's model estreme case of this more general model.
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Figure 4 Hybrid network formation process. Random meetinigdgtéd lines) find an initial number of
friends (on the left) and network-based meetingslidd lines) pick friends of friends (on the right)

| observe that hybrid models fit structures of emspl IT networks well. A pre-study at a recycling
company builds confidence in the fact that hybrobeis can possibly match data of real-world degree
distributions, densities, clustering coefficientsdaaverage path lengths. In the example, nodes
represented information systems and links repreddidws of information. The simulation data fitted
structural characteristics of the network — conggstof 212 nodes and 234 edges — as degree
distribution, average path length or clusteringfiicients.

Strategic agents: | now turn to technology adoption choices of nevde® In the model new nodes
assess a technologies’ perceived quality (or b#bkg)uand network externalities (cf. Arthur 1989)
The perceived qualitypgype iS €xogenous and depends on the agent’s type. &gefit type holds
different lists of technology preferences. Netwaskernalities weight the number of like-minded
partners with the effect strength. Equation 4 shawagent's technology adoption function:

Where the binary variabbeg is one ifi’s partner has adopted technolagfand zero otherwise). | sum
overi's partners to determine an agents’ externalitiescdisbach et al. 2012). jifincludes all other
nodes exceptthe model resembles Arthur’'s model (cf. 1989).

2.3 Measuring Lock-Ins

What is the probability of an existing node to reentate? What is her ease to switch technologies?
The answer depends particularly on how many neighbba given node adopt the same technology.
That is, how homogeneous is a hodes’ neighborhbloe.measure is normalized by dividing it by the
total number of neighbojsHomogeneityh for nodel is then given by Equation 5:

h; = M with x € {01} and 0 < h <1 (5)
Where x, denotes a binary variable that is one if a neightlso uses technology (and zero
otherwise). The homogeneity is ond’# neighbors entirely uses technology In contrasth; is O if
none ofi’'s neighbors implements the same technology. Tergene the overall homogeneity in the
network, | simply average the homogeneity ovettalnodes as shown in Equation 6:

. h
H=Zimve 0 <h< (6)

n

Whereh is again the heterogeneity of nodandn is the node count. Figure 5 shows homogeneity
examples. Figure 5A is heterogeneous as each soslgrriounded by neighbors of different quality.
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Under positive network effects the networks wilt he stable as nodes will revise their decision in
favor of their peers. Figure 5B shows a homogenemiwork where each node is surrounded by
neighbors of the same quality. If nodes experiepositive feedback from their neighbors, the
configuration is supposed to remain stable. Theif€igC network also displays strong homogeneity.
But instead of having a single technology regimeo ttechnologies govern different clusters.
Supplementary diffusion curve analysis (cf. Arth@89) is necessary to separate Figure 5B and C.

A B

L & o d
B B

H=0 H=1

Figure 5 Homogeneity measure for different simple examples

2.4 Interventions

So far, I initialized a network and grew it. | bght everything together to achieve emergent effects
Intervention experiments now aim to extend our ustd@ding on path-breaking and -reinforcement. |
conceptualize three intervention types:

* Implantations of new network structures
* Infections inside of a grown network structure
e Environmental dynamics

First, | implant new external structures into thetwork. | vary the number of nodes. New network
components, consisting of several interlinked npéeser the network and put stress on the current
network configuration. These new structures mayizatiexisting technologies or bring in new
technologies. One may think of an airline joiningteategic alliance. Alliance members may already
employ their own technological standard, which ncagrce the local airline to adapt its own IT
infrastructure. Basically, this extends the simgrewth process described earlier. | expect intargst
nonlinear effects as implanting components thatirgegnally homogeneous could result in a sudden
passing of threshold levels. The network maybertéfies and tips towards a technology.

Second, | infect nodes inside a given network stinec Then | observe how changes in the network
propagate and when and where agents switch to emtatthnology. Once an infection is triggered, it
results in large ripple effects over the entirenwek. | propose a propagation algorithm that prdsee
as follows (see Appendix | for pseudo code snipp@tle of the nodes with a maximum dedrge.
based on the count of link neighbors) is pickethection target. All first-order neighbors of thede

— within a distance of one step - are stored inedghbor list'’. They are marked as ‘reached’ and it
checked whether these nodes benefit from switchivegr technology. The switching calculus is
explained below (see section 2.5). Next, all fosler nodes perform a further, radial search.
Basically, the simulation creates a ‘waiting lisfth all second-order neighbors. This new list agpls
the existing ‘neighbor list'. It is processed irethext simulation round in the same way. This fadia
search is continued until no unreached neighbomsaire The propagation algorithm results in a
(radial) cascade triggered by the infected node twe entire (reachable) network, i.e. first, sekon
third, n-th order neighbors.

Third, | dynamize the environment. | incorporateimnmental changes by manipulating the agents’
(technological) preferences. Qualities of techn@sghange as a function of time. One may think of
S-shaped technology maturity curves (cf. Frenkeal. 1012).

3 Alternative infection targets may be nodes withigh betweeness or eigenvector centrality (cf. Sack2008)
or “peripheral” nodes. Similarly, Weitzel et aRQ06: 507) reason that large players may standaetigway
and pre-standardization efforts should thus tasgetll players as they are more susceptible totiofes.



2.5When Do Agents Switch?

| conceptualize two opposing forces when agentsiden changing their technological orientation:
Gains in utility from a new technology promote aigeto switch but switching costs counteract. A
fine-grained model of switching incorporates thikokwing parameters:

* the quality or base utility of the (new) technolpgy

» the (positive) network externalities an agent reegifrom its neighbors,
e an agents’ accumulated switching costs and

» switching costs from an agents’ network embeddexines

Equation 4 already specified the first two, utddsiven parameters — quality of the technoldggnd

network externalitieswg * X ; ;, n(g) Xq- | thus concentrate on the switching costs — #ter ltwo

parameters of the agent’s switching calculus. gesgan endogenous, dynamic model. In the (static)
model of standard diffusion (see Equation 1 — 3sdumed exogenous standardization costs. They
became assigned to nodes randomly normally disédbu expand this notion by assuming that nodes
memorize. In a simplest possible cae specific switching costs depend on the nurnbeeriods a
node has already chosen a solution. One can thittksomemory as the amount of legacy functions,
applications and data an organization has accuetllditat “lock in” the capability (cf. Ross et al.
2006: 50). Consider in this connection a list tinaids nodd’s andj's memory:

i [B, B, B, B, B, B, B, B, B]
ii[A A A A A B,B,B, B

The accumulated switching co&tM sum over the memory items and pick out the incdibigaones.
If for instancej reasons to switch from B to A, she must cope witlerious B legacy when migrating
to A. In contrastj faces fewer barriers to switch to A as she alresatyimulated A-items before.

In addition to accumulated switching costs, | atemsider switching costs from agents’ network
embeddedness. System embeddedness is a key dwivadzldyed information systems discontinuance
decisions (cf. Furneaux and Wade 2011). Switchimgtsc often arise because of potential
incompatibilities for working with a new technolodgf. Greenstein 1997) and costs for switching
interfaces to other applications (cf. for ERP petgeBeatty and Williams (2006)). | assume that
interface-related switching costs depend on thebmunof neighbors that are currently on the same
technology as nodé. As costs to interface often explode with the nambf interfaces (cf.
Schneberger and McLean 2003), | assume that embedsie costKN increase quadratically with the
number of (legacy) neighbors.

Altogether, Equation 7 shows when an ageswitches based on the previous considerations:
1
Sig = Uig —aXt-1 KMz _EﬁZjinN(g)KNt% (7)
with KM,KN >0 and0<a,f <1

Where Uy, is the utility an agent gains from the technolsgipiality and the network effects (see
Equation 4). The later cost function has two congmtsl KM andKN). KM_q is the number of legacy
applications and functions accumulated on the iexjs(not the new) technological platform. As
shown above, each node holds a memory to recohisiisry. KM is the sum of this memory over the
simulation timet. Legacy costs occur only if an entryitsf memory isnot on the new technology. |
used a negation operator)(to indicate that factKN denotes the costs from the network
embeddedness. It sums over the neighbors thatoar@enrthe new technology. | includedand S for
scaling purposes only. | used a linear-quadratst function (cf. Ballester et al. 2006) in whicketh
legacy costKM scale linearly with time but interface co#tsl scale quadratic with the number of
neighbors on another technological platform. | stidfor the reasons mentioned above. Agents switch
if S> 0 to the technologyg with the highest switching payoff.

* Advanced memory modeling includes e.g. discourting forgetting (cf. Gilbert and Troitzsch 2010)



3. First Results

Focusing on the role of different interaction stames () in growing networks on standard diffusion,
| conducted experiments with a prototypical implaetagon of the model in Netlogo 5.0.3 including
the (new) network extension.

Figure 6 shows outcomes of hybrid random growtlc@sses with varied levels of integrafiomand

o = 0.1. The network is concentrated for high lewdlmtegration (cf. Figure 6C). The network isdos

for low levels of integration (cf. Figure 6A andgkre 6B). In all cases, the network shows strong
homogeneity as may be expected under positive &sdiblomogeneity decreases for higher levels of
integration but peaks again for a full-density natw The result of a u-shaped homogeneity curve
(see Table 1) may be explained by the fact thasriaall levels of integratiom{= 1) agents have little
variety in their neighborhood. They solely depend ane friend and its technology choice. For
medium levels of integration agents experienceelargriety in their circle of friends. In contrast,
positive feedback in a strongly integrated netwookinteracts. Degrees of freedom decrease as most
friends adopt similar technologies. For medium levef integration, it can be observed that the
random network growth process results in differehnologies thriving in different clustéréf.
Figure 6A, B and C). The full-density network ofgiie 6D shows a homogeneous network that
entirely dominated by a single technology. Thig@&xie case simulates a path dependent process (cf.
Arthur 1989). Table 1 shows a more detailed anslg§ithe outcomes by averaging the results from
different networks over ten runs per parameter.

m=full

“DiffusionAvs.B H “DiffusionAvs.B ] ‘DiffusionAvs.B “f-

Figure 6 Hybrid network with different levels of integratigafter 100 ticks)

Table 1 Averaged results over 10 simulation runs per patame

Clustering- Average Path Diffusion win. Homogeneity
Coefficient Length technology (in %)
m=1 0,02 5,86 71% 0,98
m=3 0,64 3,43 81% 0,87
m=10 0,54 2,20 77% 0,81
m=full 0,91 1,02 95% 0,98

Figure 7 illustrates results of first interventioddter | grew the network for 100 ticksl implanted a
new technology@) into the network. Agents continued to decide escdbed in Equation 4. In Figure

® Each simulation was initialized with a static randnetwork withn = 10,1 = 0.35, an initial standard
diffusion process as described in footnote 1, aidylandom growth process with varying mis2, two types
of agents, symmetric base preferences=¢0.9 0.1) (0.9 0.1) and network magnifiers of (0.8) (0.4 0.8)

® Note that the clustering coefficient is close ¢oazform=1 (cf. Table 3 because the clustering coefficient is
based on a nodes’ number of triangles. No trianglegpresent before m2.

" The simulation was initializes using the followipgrameters: Static random network witl 10,4 = 0.35, an
initial standard diffusion process as describefbatnote 1, a hybrid random growth process with2, a = 0.5,
g=2, one type of agents with= (0.6 0.6) and network magnifiers of (0.4 0.4)



7A, technologyC was supposed to be twice as attractive as tectyofo and B (thus, base
preferences of agents were 0.6, 0.6 and 1.2). Tdmitude of network effects was identical acroks al
technologies (i.e. 0.4, 0.4 and 0.4).

‘Diffusion (A,B,C) I i e
A . 8 ® ¢ L ]

i ¢ T
Bg@
= ]

Piffusion (A,B,C)

Figure 7 Introducing a new technology with different utii§i in a grown network

As shown in the diffusion plot of Figure 7A, tecthogy C does not gain considerable momentum.
Only few instances decide in favor of the new tetbgy. This result may be expected as only new
nodes that are not coerced by two neighbors ofséme technology experience enough degrees of
freedom to select technology C. Figure 7B, in castirshows considerable dynamics towards the new
technology. In the example, | further increased d&tgactiveness. Agents now find technology C three
times as attractive as A and B (ig.= 1.8). New nodes migrate to C completely as their owirtyu
from the new technology is higher than the costsveircoming the prevalent network effects.

4. Concluding Remarks

| presented a new (general) model to research atdmtiffusion and path dependence in networks of
organizations adopting technologies. | breed aificét “in-vitro” network and penetrate it
rigorously. To summarize briefly, the model sesglit apart from previous models by having different
forms of network initialization and network growstrategies. First experiments (see Table 1) show
that several existing path dependence models,Aetgurs model (cf. 1989), can be reproduced as
special or limiting cases of the model. In this waym to build confidence in the models’ validits

a byproduct, | constructed a flexible laboratorgdyto-use for other path dependence researchers.

I acknowledge that the experimental setup and ithalation results are yet limited. Focusing on the
role of interaction structures in growing netwodss standard diffusion, the model shows that growth
processes will influence standard diffusion. Arteunodel — where one standard dominates an entire
network of agents — is certainly an extreme caskeeiGsettings will exhibit higher levels of diveysi

e.g. islands of shared technologies. In additiogaying out systematic interventions (see section
2.4), | see five particularly promising ways to geed furtherFirst, expanding the analysis to more
than two technologies is a natural next step. Ddifigs differ in quality in contrast to the simple
case? The possible outcomes of the arising heteeitgeare yet hard to foresee. This presents
interesting challenges for future research.

Secondanother next step may be to replicate the poipeedperiments (cf. Arthur 1994: 7). Thereby,

the probability of drawing a ball of a particulanlar depends on the systems’ current state. My
simulation environment should be equipped to repcedthe models’ findings. Another area of

replication is the unified model of standard diftus (cf. Weitzel et al. 2006). Further research may
show in more detail the existence of a “standatitinagap” (see section 2.1). This must include
solving the linear program on the standardizatimblem in the investigated networks.

Third, additional research may enhance the random nletgromth process (see section 2.2) towards
a strategic network formation process (cf. Jack&0688: 153 et seq.). Strategic network growth
models provide answers tehy networks take particular forms, rather than justv they take these

forms. This would include explicitly modeling thests and benefits that arise from various networks
(ibid: 153). New nodes may base their decision bitkvlinks to form not only on pure chance but on



a deliberate choice of which pre-existing nodesadtmctive technology partners. This could exhibit
interesting nonlinear features and resemble engpitéchnology diffusion curves.

Forth, expanding the homogeneity measure (see sect®nt@.sub clusters of the network is an
interesting conceptual challenge. The data suggéstions with strong homogeneity in sub clusters
without strong overall homogeneity. When and whier@ath dependence local? Diagnosing such
situations will profit from advanced clustering pedlures such as k-means and by identifying the
number of clusters and their internal homogenaitpmatically.

Fifth, changes in technological networks propagate lsecapple effects are promoted by “cascades
of complementarities” (cf. Dobusch 2010) or “ramifiwebs of externalities” (Ciborra et al. 2000: 2).
Thereby stronger integration of nodes may favoitagion (cf. Aral et al. 2009: 21545), probably in a
nonlinear way (cf. Elliott et al. 2012). | conceaattrd on the (sole) number of links to model intégra
(see section 2.4 and 2.5), but there are certaihlgr possibilities. Future research could espgcial
consider the strength of integration. This presané&esting challenges.
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Appendix

Appendix 1 Algorithm for propagating changes through the nekwblote that | did not include the
procedure for checking whether all nodes lie ingtamt component and several technical commands
To propagat e-changes
ift=0]
set |st-radius[]
ask one-of turtles with [count |ink-neighbors = max-degree]

[

set reached? true
let i O
while [i < count (nwturtles-in-radius 1)]

[

set Ist-radius lput (item i (sort nwturtles-in-radius
1)) Ist-radius
set i i +1

]

set tt +1

]
]
ift>0
[
let x O
while [x < length | st-radius]
[
ask itemx |st-radius
[
set reached? true
check-swi t chi ng

]

set x x +1
]
ifelse any? turtles with [not reached?]
[ set Ist-radius radial-search |st-radius ]
[ show "no nore nei ghbors!" ]
set tt +1

]

end

To radi al -search [nmy-1list]
let wait-1st[]
let j O
while [j < length ny-list]
[
ask itemj ny-list [
let kKO
while [k < count nw turtles-in-radius 1]

[

if not [reached?] of itemk sort nwturtles-in-radius 1

[

set wait-Ist Iput (itemk sort nwturtles-in-radius 1) wait-Ist
]
set k k +1
1]
set j j +1
1]
report wait-Ist
end

11



References

Afuah, A. (2013). Are network effects really allal size? The role of structure and conduct.
Strategic Management Journ@4(3), 257-273. doi:10.1002/smj.2013

Aral, S., Muchnik, L., & Sundararajan, A. (2009)sfinguishing influence-based contagion from
homophily-driven diffusion in dynamic network®roceedings of the National Academy of
Sciencesl0651), 21544-21549. doi:10.1073/pnas.0908800106

Arthur, W. B. (1989). Competing Technologies, Iragiag Returns, and Lock-In by Historical Events.
The Economic Journg®9(394), 116-131. Retrieved from http://www.jstor fstgble/2234208

Arthur, W. B. (1994)Increasing Returns and Path Dependence in the Bogindniversity of
Michigan Press. Retrieved from http://books.goagim/books?id=k6Vk5YZRzpEC&pgis=1

Ballester, C., Calvo-Armengol, A., & Zenou, Y. (B)OWhao's Who in Networks. Wanted: The Key
Player.Econometrica74(5), 1403-1417. doi:10.1111/j.1468-0262.2006.00¢09.

Barabasi, A., & Albert, R. (1999). Emergence ofllcain Random NetworksScience2865439),
509-512. doi:10.1126/science.286.5439.509

Beatty, R. C., & Williams, C. D. (2006). ERP II: &epractices for successfully implementing an ERP
upgrade Communications of the ACMY(3), 105-109.

Botzem, S., & Dobusch, L. (2012). Standardizatigul€s: A Process Perspective on the Formation
and Diffusion of Transnational Standar@sganization Studies83(5-6), 737-762.
doi:10.1177/0170840612443626

Buxmann, P., Weitzel, T., von Westarp, F., & Konlg, (1999). The standardization problem: an
economic analysis of standards in information systdnProceedings of the 1st IEEE
conference on standardisation and innovation infimfation technology SIIT'9%p. 56-57).

Ciborra, C., Braa, K., Cordella, A., Dahlbom, Bajli, A., Hanseth, O., ... Simon, K. A. (2000).
From control to drift: the dynamics of corporatdarmation infrastructuresNew York: Oxford
University Press, U.S.A.

David, P. A. (1994). Why Are Institutions the “Cians of History”?: Path Dependence and the
Evolution of Conventions, Organizations and Insititos. Structural Change and Economic
Dynamics5(2), 205—-220. Retrieved from
http://www.elsevier.com/wps/find/journaldescriptiows_home/525148/description#description

Dobusch, L. (2010). Kaskaden der Komplementafttddabhangigkeit organisationaler und
technischer Strukture@chmalenbachs Zeitschrift flr betriebswirtschdfid-orschung62(4),
422-451.

Draisbach, T., Widjaja, T., & Buxmann, P. (2012,rstg. Lock-Ins auf Netzeffektmarkten -
Ergebnisse einer SimulationsstudwKWI 2012 TagungsbandRetrieved July 27, 2012, from
http://tubiblio.ulb.tu-darmstadt.de/57084/

Elliott, M., Golub, B., & Jackson, M. (2012). Firdal networks and contagioAvailable at SSRN
2175056 Retrieved from http://homes.ieu.edu.tr/~adumami&85/FNcontagion.pdf

12



Frenken, K., Izquierdo, L. R., & Zeppini, P. (201Bfyanching innovation, recombinant innovation,
and endogenous technological transitidsvironmental Innovation and Societal Transitipns
20124), 25-35. d0i:10.1016/j.eist.2012.06.001

Furneaux, B., & Wade, M. (2011). An explorationoofanizational level information systems
discontinuance intentionsanagement Information Systems Quarte3g(3), 573-598.
Retrieved from http://dl.acm.org/citation.cfm?id93823.2208927

Gilbert, G. N., & Troitzsch, K. G. (2010%imulation for the social scienti&. ed., re.). Maidenhead:
Open Univ. Press.

Greenstein, S. M. (1997). Lock-in and the costsvafching mainframe computer vendors: What do
buyers seefhdustrial and corporate changé(2), 247-274.

Isler, K., & D’'Souza, E. (2009). GDS capabiliti€) control and dynamic pricingournal of
Revenue and Pricing Managemed(-3), 255—266. Retrieved from
http://dx.doi.org/10.1057/rpm.2008.57

Jackson, M. O. (2008%ocial and economic networkgrinceton and NJ: Princeton Univ. Press.

Jackson, M. O., & Rogers, B. W. (2007). Meetinga8tyers and Friends of Friends: How Random Are
Social NetworksThe American Economic Revigdv(3), 890-915. Retrieved from
http://www.jstor.org/stable/30035025

Levin, Y., McGill, J., & Nediak, M. (2009). Dynamjricing in the presence of strategic consumers
and oligopolistic competitioManagement Sciencg®y(1), 32—46.

Petermann, A. (2010Rfadabhangigkeit und Hierarchie: Zur Durchsetzungftkvon
selbstverstarkenden Effekten in hierarchischen @isgionen Dissertation. Freie Universitat
Berlin.

Ross, J. W., Weill, P., & Robertson, D. (200Biterprise architecture as strateggreating a
foundation for business executiddpston, Mass.: Harvard Business School Press.

Schneberger, S. L., & McLean, E. R. (2003). The glexity cross: implications for practice.
Communications of the ACM6(9), 216—225. doi:10.1145/903893.903940

Talluri, K. T., & van Ryzin, G. (2005)'he Theory and Practice of Revenue ManageniNaw York:
Springer.

Weitzel, T., Beimborn, D., & Kdnig, W. (2006). A Uied Economic Model of Standard Diffusion:
The Impact of Standardization Cost, Network Effeatsd Network TopologyManagement
Information Systems Quarterly0(8), 489-514. Retrieved from
http://www.jstor.org/stable/25148770

Weitzel, T., Wendt, O., & von Westarp, F. (2000&cBnsidering Network Effect Theory. HCIS
2000 Proceedingfp. 484—494).

Westermann, D. (2013). Potential impact of IATA'B® on revenue management and pricihg.
Revenue Pricing Manad2(6), 565-568. Retrieved from http://dx.doi.org/Xi5T/rpm.2013.23

13



