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Abstract 

The role of institutional arrangements in organizations cannot be overestimated: 

“Institutional change determines the development of social systems over time and thus 

is the key in the understanding of historic change. (…) The differences in economic 

performance over time depend heavily on how the institutions evolve.” (North, 1990) 

Complementary effects and coordination effect are at the heart of positive feedback-

loops that drive the process of institutional development. Path dependence theory 

suggests that under these conditions inefficient institutions may become locked-in, 

meaning that it is not possible to abandon them by action undertaken from within the 

system. The persistence of inefficient institutions over time can create a growing threat 

to an organization’s viability. 

With the use of computer simulation, institutional change can be modelled as an 

interdependent multilevel-process. The results allow predictions of institutional long-

term states of the system and the conditions, which may result in a lock-in situation. 

By varying the magnitude of the complementary effects and organizational design 

(hierarchy) as the two independent variables, the institutional evolution in social 

systems prone to increasing returns can be examined. The results add to both path 

dependence theory and the discussion about the choice of optimal organizational 

design. 

 

Path dependence theory 

As a dynamic theory path dependence theory basically assumes that initial decisions 

may increasingly restrain present and future choices. Paul David initiated the 

discussion on path dependence from an economic perspective (David 1985). Within 

his historical studies he explored the development of the QWERTY keyboard 

technology and describes how this inferior standard was diffused and maintained 

although superior technological innovations were available at some point. Similar 

studies were carried out by others on the technologically surprising dominance of 

inferior technologies (Cusumano et al. 1992, Katz & Shapiro 1986). As already noted, 



path dependence theory is basically based on the fact that history matters (Teece et al. 

1997, Nooteboom 1997). Brian Arthur (1989, 1994) has formalized and to a minor 

extent also simulated path-dependent processes by highlighting the additional 

importance of self-reinforcing mechanisms.  

 

From that perspective, path dependent processes are generally described as self 

reinforcing processes characterized by non-predictability, non-ergodicity, inflexibility, 

and potential inefficiency (Arthur 1989, 1990, David 2001, Pierson 2000). In other 

words, the path’s final outcome among possible different alternatives is not predictable 

and might become a dysfunctional trap, inhibiting the organization to deviate from. 

So, path dependence is conceptualized as the outcome of a dynamic process that is 

ruled by one or more self-reinforcing mechanisms which lead to a narrowing of the 

variation and range of (managerial) discretion (Sydow, Schreyögg, & Koch, 2009). 

Path dependence describes a tapering process. Thus, a path constitutes a restriction of 

choice for a social or psychic decision-making system. While choice is not restricted 

to start with, it becomes restricted in the process of following that path. Figure 2 

illustrates all three stages. The degree of path dependence increases with the duration 

of Phase II and is full-blown in Phase III (lock-in). 

 

Fig. 1: The three stage model of path dependence (Sydow, Schreyögg & Koch, 2009) 

 

 

 



The idea of self-reinforcing mechanisms implies a positive feedback. A self-

reinforcing mechanism is a necessary precondition for what is defined as a path. That 

implies that agents act (consciously or unconsciously) upon these mechanisms and by 

doing so they reinforce the path-building effects. The diminishing variety and the 

increasing limitations of choices are collateral effects of this process. Hence, the 

hallmark of path dependence theory is its focus on self-reinforcing effects (Arthur 

1994, David 1993, Bassanini & Dosi 2000). These effects are understood as the central 

triggering elements that drive path dependence (Sydow et al., 2009). Up to now, path 

dependency research has hallmarked the crucial elements that drive path emerging 

processes in phase II (see Figure 2) of the model which finally lead into a lock-in. At 

least six different forms of self-reinforcing mechanisms (Sydow, Schreyögg, & Koch, 

2005) can be distinguished from a technological and from an institutional perspective: 

(1) economies of scale and scope, (2) direct and indirect network externalities, (3) 

learning effects, (4) adaptive expectations, (5) coordination effects and (6) 

complementary effects.  

 

The first three mechanisms particularly apply to diffusion processes of technological 

standards. Economies of scale and scope refer to the market’s supply-side and cost 

advantages due to production expansion as well as synergy effects of adjunctive 

product variety. Direct and indirect network externalities refer to the demand-side and 

cover the single agent’s additional utility stemming from the technologies diffusion 

rate. Learning effects build on a rather individual level of the demand-side with 

illuminating experiences agents gain with their adoption of a specific technology. 

Learning effects also play an important role from an institutional perspective. Here the 

implementation and the repeated appliance of institutions lead to learning effects and 

the internalization of these institutions, resulting in deviation becoming less and less 

attractive. Adaptive expectations relate to the agents’ interaction and their co-building 

of preferences. The more an agent expects others to prefer a particular product or 

standard, the more attractive it becomes. 

 

From the institutional perspective of this paper the final two mechanisms are of most 

relevance. The coordination effect was introduced by North (1990) and refers to the 

general benefit of coordinated behavior. The more agents adopt a specific institution 

the more efficient the interaction among the agents becomes. In other words, shared 



rules contribute to the anticipation of other agents’ behavior; reactions can be foreseen 

and uncertainty as well as coordination costs will be reduced. From the single 

adopter’s point of view, it is attractive to adopt an institution while the attractiveness 

depends on the spreading of that institution. The well-known traffic-rule example 

illustrates this (Arthur 1994, 14): Imagine an island having roads but neither cars nor 

any traffic rule. Once cars are introduced, drivers have to decide for left-hand or right-

hand driving in order to prevent unwanted collisions. Oncoming indifferent drivers 

coordinate their behavior, others accordingly adapt and at some point one alternative 

dominates the other one, with the obvious benefit of coordinated interaction.  

 

Complementarities result from plurality and connectivity between different institutions 

(Stieglitz & Heine 2007). Essentially, complementarities mean synergy resulting from 

the interaction of two or more separate and different institutions, the institutions’ 

advantages do not just add up, there is a surplus based on the complementarity. In 

other words: an institution is reinforced by another one and vice versa. Referring to the 

traffic-rule example, introducing the institution of giving way at crossroads to drivers 

coming from the right reinforces right-hand driving. 

 

At this point it should be stated that these effects can only be differentiated on an 

analytically level, empirically they are rather jointly at work rather than acting 

separately.  

 

Conceptual argument of complementarity feedback 

In our study we focus on one of the mechanisms: complementarity. Complementary 

effects form positive feedback loops that may pave the way for path dependence and 

lock-in. We adopt the understanding of David (1994) arguing that two (or more) 

institutions are complementary to one another when the existence (or more precise: a 

higher diffusion rate) of the focal institution makes the adoption of the other 

institution(s) more attractive for the relevant decision makers in the system and vice 

versa. David argues that in dynamic and complex environments new problems emerge 

all the time, creating the necessity of adopting new institutional solutions. In the 

process of finding, new institutional arrangements are able to solve the current 

problem; decision makers favour those institutions that are more compatible with 

already existing institutions over those which are less compatible. The main argument 



is the desire of decision makers to avoid so called misfit-costs. They include time and 

resources needed to solve conflicts resulting from the installation of less-compatible 

institutions. The tendency to avoid misfit-costs favours the emergence of a set of 

institutions that are highly compatible to each other (in the sense of having very low 

misfit-costs when existing together with the other institutions in the set). Such a set is 

called an institutional cluster (North 1990). Whenever a new institutional arrangement 

is highly compatible to the existing institutional cluster, the cluster becomes denser. 

This means that future misfit costs will significantly rise for institutions that are not 

compatible to the already established institutions in that cluster. Thereby chances 

increase for forthcoming institutional arrangements to be again in line with the 

institutional cluster – forming an even denser cluster. This conceptual argument of 

institutional complementarity is illustrated in figure 2. 

 

Figure 2: conceptual argument of positive feedback created through complementary 

effects. 

 

 

Because of the interdependency of the macro variables (density of the institutional 

cluster, diffusion rate of institutions) with the variable on the micro-level process 

(decision of members of the social system who adopt one institutional rule or the 

other), an analytical approach applying solely mathematical deduction is not 

promising, as the differential equations that describe the systems behaviour become 

intractable even with very restrictive assumptions and number of variables (see the 

work of Arthur et al. 1989). Davis et al. (2007) suggest a numerical solution when 

nonlinear, multilevel and longitudinal processes need to be modelled, and call for the 

application of computer simulations. 

 



Computer simulations as scientific method 

Besides logical deduction and empirical research computer simulations have become  

a third way of doing research in social sciences. When interdependencies between 

variables in complex and dynamic systems make the problem mathematically 

intractable, computer simulation offer a numerical solution to many problems. 

“Simulation is particularly useful when the theoretical focus is longitudinal, nonlinear, 

or processual, or when empirical data are challenging to obtain.” (Davis et al, 2007) In 

simulation research a formal model is implemented into computer code and often run 

numerous times to uncover the system behaviour. When examining the development 

of institutions in organizations and disclosing path dependencies we face most of these 

difficulties. Thereby computer simulation seems a very promising method. 

 

A Simple Model 

In a simple Model we examine the process of institutional evolution in a multi-level, 

interdependent system. Our goal is to concentrate on the implications of 

complementary effects that trigger positive feedback loops. In the simple model we 

put aside the influence of organizational hierarchy which will be included later on in 

the advanced model. 

 

We look at a very simple social system containing of a number of agents (i.e. 1000 

agents), who decide to comply with one of two possible institutional solutions. In 

accordance with that simple traffic-rule example given above, the two institutional 

solutions are exclusive, meaning that they offer incongruous solutions to the same 

problem. In the simulation model colours are assigned to each solution, so for 

simplification it is possible to speak of a red and a blue institutional solution. The 

system contains of a set of agents while each agent has exactly one attribute which is 

the behaviour regarding the two contradicting institutional solutions red and blue. We 

applied a discrete timeline where time is counted in so called “ticks”. For every tick, 

each agent decides whether he will realize the blue or red institutional solution. The 

decision function that defines the agent’s decision is at the heart of the model. Driving 

from path dependence theory, random small events (David 1989, Arthur 1990) are 

present and potentially influencing the process with earlier occurring events being 

potentially more influential than later ones. Due to complementary feedback decision 

makers favour an institutional solution that is compatible to a denser cluster (David 



1994). In the modelled system two institutional clusters exist, one containing the blue 

and one containing the red institution. (Note: Arthur (1989) showed analytically that in 

cases where the diffusion of only one technology respectively institution A enjoys 

positive feedback while the other one B does not, the domination of A is inevitable.) 

The independent variable is the magnitude of complementary feedback. The initial 

density of the two institutional clusters can be varied in different simulation runs. The 

results stated in this paper are obtained with equal initial density for each cluster at the 

beginning of each simulation run. 

 

Implementation of simulation model 

The formal model was implemented using netlogo 4.0 implementation environment. 

At every tick, all agents adopt red or blue behaviour according to the actual diffusion 

of institutional rules and the density of each cluster, taking into account the misfit 

costs arising from a choice that is incompatible to the denser cluster. The 

corresponding variables implemented in the simulation model are called ‘pop-state’ 

and ‘complementarity’. ‘pop-state’ varies from -1 to 1 and shows whether agents 

actually favour the red institutional solution over the blue (pop-state < 0) or the blue 

institutional solution over the red (pop-state > 0). When ‘pop-state’ reaches the value 

of 1 (-1), the corresponding system behaviour shows a diffusion rate of 100% of the 

blue (red) institution, meaning that all individuals have fallen in line with the 

institutional solution compatible to the denser cluster. ‘Complementarity’ is the 

strength of the complementary feedback. It is the independent variable of the model. It 

regulates the impact of a higher diffusion rate of the focal institution on the 

institutional cluster’s density. ‘Complementarity’ ranges from 0 to +1.  A value of 0 

means that an additional highly compatible institutional solution does not change the 

clusters density at all while a value of +1 means that an additional highly compatible 

institutional increases the clusters density dramatically. Also at every tick a random 

number is drawn for every agent, incorporating personal preferences and random small 

events into the decision process. In the netlogo implementation the corresponding 

variable is called ‘random-number’ which is a random number between 0 and +1. A 

value of close to 0 is associated with a very strong random tendency to choose red 

behaviour, A value close to 1 is associated with the very strong tendency to choose 

blue. 

 



With every tick, one agent after another chooses to adopt the red or the blue 

institutional solution corresponding to the following decision rule: 

If    random-number < exp (-(complementarity + a) * b * pop-state) 

choose the red solution otherwise choose the blue solution.  

Note that a and b are parameters for scaling purposes only. Figure 3 shows the netlogo 

interface and a sample run of the simulation model. 

 

Figure 3: sample run of the simulation model 

 

 

Results 

Applying the Monte-Carlo method, the system behaviour can be examined over time 

for different degrees of complementary feedback strength. Figure 4 shows the results 

for complementarity = 0 and complementarity = +1. When complementarity equals 0, 

random small events govern the process. Because of 1.000 agents making 

simultaneous decisions every tick, the law of large numbers applies: In the long run 

both institutions persist with significant diffusion rates. Decision makers are not bound 

to a dominant behaviours rule but can choose dependent on their personal preferences 

and actual circumstances (small events). 

In contrast if strong complementary feedback applies, the probability of finding a 

system with significant diffusion rates for both institutional solutions decreases with 

time, approaching zero in the long run. Dependent on the random small events 

governing the process in the early stage, one of the two institutional solutions becomes 

dominant and locked-in, being the only alternative for decision makers at some point. 

 



Figure 4: Results of the simple model: high complementarity necessarily leads to a 

lock-in situation 

 

 

The results shown in figure 4 are consistent with the results of Arthur’s deductive 

analysis of positive feedback processes. With the applying of a computer simulation it 

was possible to model the process much more realistically and with less restrictive 

assumptions compared to Arthurs polya urn model (Arthur 1989). 

 

Advancing the model: implementing organizational hierarchy 

Path dependence theory is a market based approach (David 1985, Arthur 1989). The 

application to social systems like a firm is often criticized because a firm lacks some 

basic constituents of a market, especially the absence of power. While scholars of 

market-based approaches at least theoretically argue that total competition and the 

absence of power do exist, management scholars cannot neglect one of the 

fundamentals of a firm, which is the organizations structure that explicitly creates 

power inequalities. Thereby it seems necessary to include hierarchy into the model to 

address the fact that the organizational design might impact the evolutional diffusion 

processes of institutions (and technologies) within organizations. 

In an attempt to embrace this argument, the notion of organizational hierarchy has 

been added to the simple model. A formal organizational structure is introduced by 

assigning a superior to every agent in the system. In the simple model, agents decide 

exclusively on the basis of small events and mis-fit costs arising from dense 

institutional clusters. Now a third variable influencing the individual decision making 

process is introduced, which is called ‘hierarchyinfluence’. This variable includes 



explicit orders from superiors as well as more implicit elements, as individuals in 

organizations try to meet the expectations of their superiors. The individual’s decisions 

are now dependent on random small events, complementary feedback and hierarchical 

influence of their superiors.  

At every tick, one agent after another chooses to adopt rather the red or the blue 

institutional solution corresponding to the following decision rule: 

If    random-number <  

exp (α * -(complementarity + a) * b * pop-state + β * hierarchyinfluence)  

then choose the red solution otherwise choose the blue solution. 

Note that a and b are parameters for scaling purposes only, and α is a weighting 

parameter between 0 and +1 and β = (1- α). 

By varying the way of assigning superiors to agents different organizational designs 

can be modelled. According to Cohen et al (1972) typical organizational designs are 

the authoritarian, the hierarchical and the democratic design. In recent years the matrix 

organization has emerged as another important organizational design. 

Advancing the simple model with the assigning of superiors who influence the 

decisions of their subordinates is our research agenda. A typical hierarchical 

organisational design has been implemented. The netlogo implementation is shown in 

figure 5. 

 



Figure 5: Advanced model with hierarchical organizational design 

 

 

 

 

Discussion and future research 

We formally modelled the impact of complementarity effects in the process of 

institutional development. By means of computer simulation we formally validated the 

predictions made by scholars of path dependence theory about the importance of 

positive feedback in institutional evolution. Our model is much more sophisticated 

(i.e. agents can revoke their decision as time goes by) than the polya urn model 

introduced by Arthur (1989). The consistency of our results with Arthur’s 

mathematical deduced solution to the polya urn model is a good means of validation 

for our work. In the near future results will be driven for different organizational 

designs. This approach enables us to clarify if and to what extend the predictions of 

path dependence theory hold when asymmetric power structures are incorporated in 

the observed system. The results may also give some insights to answer the questions, 

which organizational designs are more or less prone to the dangers of path dependence 



and lock-in. The results will thereby add to the ongoing discussion about optimal 

organization design. 
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Appendix 

A. Implemented netlogo 4.0 code for simple model 

globals 

[ 

  blue-count            ; population of blue turtles = 1 

  red-count             ; population of red turtles = 0 

  blue-fraction 

  pop-state             ; fraction of blue agents  

  frequency-ny          ; parameter which is of least interest 

] 

 

to setup 

  clear-all  

  ;; create turtles on random patches. 

  set frequency-ny 0.005 

  ask n-of (number-blue-institution + number-red-institution) patches 

    [ sprout 1 

      [ set color blue 

      ]  

    ] 

  ;; turn part of the blue patches red 

  ask n-of (number-red-institution) turtles 

    [ set color red  

    ]  

  set blue-count number-blue-institution 

  set red-count number-red-institution 

  calc-pop-state 

  clear-output 

end 

 

to go 

  tick 

  calc-opinions 

  calc-pop-state 



  plot-counts 

end 

 

to calc-opinions 

  ask turtles 

    [ 

       

      ifelse color = blue  

      [  

          let random-number random-float 1.0 

          let pBlueToRed frequency-ny * (exp (-(preference + (complementarity + 0.5) * 

1.5 * pop-state)))  

          ifelse random-number < pBlueToRed  

          [  

            set color red 

          ] 

          [  

            set color blue 

          ] 

      ]    

      [  

        let random-number random-float 1.0 

        let pRedToBlue frequency-ny * (exp (preference + (complementarity + 0.5) * 1.5 

* pop-state)) 

        ifelse random-number < pRedToBlue        

        [  

          set color blue 

        ] 

        [  

          set color red 

        ] 

      ]    

    ] 

end 



 

to calc-pop-state 

  set blue-fraction count (turtles with [color = blue]) / count turtles 

  set pop-state ((2 * blue-fraction) - 1) 

end     

   

 

to plot-counts 

  set-current-plot "Pop-State vs Count" 

  plot pop-state 

end 

 

 

B. Implemented netlogo 4.0 code for advanced model 

 

;; every link breed must be declared as either directed or undirected 

directed-link-breed [red-links red-link] 

red-links-own [ weight ]  ;; link breeds can own variables just like turtle breeds 

turtles-own [ number generation  ] 

 

globals 

[ 

  blue-count            ; population of blue turtles 

  red-count             ; population of red turtles 

  blue-fraction 

  pop-state              

  ; coupling            ; strength of coupling of the individuals to the majority 

  ; preference          ; populationwide preference, preference=0: in the absence of 

coupling there is no preference 

  frequency-ny          ; frequency; parameter which is of least interest 

  hierarchyinfluence 

] 

 

 



 

to setup 

  clear-all 

  create-turtles 1 [ set generation 0  

    set xcor 0 

    set ycor 5 

    set color blue 

    if random-float 1 > 0.5 [ set color red ] 

  ] 

  ask turtles [ givebirth ] 

                                                                  ; show list count turtles " generated." 

  set frequency-ny 0.005 

  set hierarchyinfluence 1.0 

     

  

   

end 

 

to givebirth 

  if generation > 4 [ stop ] 

  let current-number 0 

  let offset 1 

  hatch 2 [  

    set current-number current-number + 1 

    set generation [ generation ] of myself + 1 

                                                                  ; show ( list " I am " self " my father is " 

myself " my generation is " generation ", " current-number ) 

    set color blue 

    if random-float 1.0 > 0.5 [ set color red ] 

 

    if generation = 1 [ set offset 16 ] 

    if generation = 2 [ set offset 8 ] 

    if generation = 3 [ set offset 4 ] 

    if generation = 4 [ set offset 2 ] 



    if current-number = 1 [ set xcor [ xcor ] of myself + offset ] 

    if current-number = 2 [ set xcor [ xcor ] of myself - offset ] 

    set ycor generation * 14 

    create-red-link-from myself 

    givebirth  

  ]    

end 

 

to go 

  tick 

  ask turtles [ calc-opinions ] 

  calc-pop-state 

  plot-counts 

end 

 

to calc-opinions 

   

   ifelse color = blue  

      [  

          let random-number random-float 1.0 

          ifelse one-of in-link-neighbors = nobody  

          [  

            set hierarchyinfluence 0  

          ]  

          [         

          ifelse [color] of one-of in-link-neighbors = blue [ set hierarchyinfluence 1 ] [ 

set hierarchyinfluence -1 ]  

          ] 

                     

          let pBlueToRed frequency-ny * (exp (-( (1 - alpha - beta) * preference + 

alpha * (complementarity + 0.5) * 1.5 * pop-state)) + beta * hierarchyinfluence )  

          ifelse random-number < pBlueToRed  

          [  

            set color red 



          ] 

          [  

            set color blue 

          ] 

      ]    

      [  

        let random-number random-float 1.0 

        ifelse one-of in-link-neighbors = nobody  

        [  

          set hierarchyinfluence 0  

        ]  

        [  

          ifelse [color] of one-of in-link-neighbors = red [ set hierarchyinfluence 1 ] [ 

set hierarchyinfluence -1 ]  

        ]         

        let pRedToBlue frequency-ny * (exp ((1 - alpha - beta) * preference + alpha * 

(complementarity + 0.5) * 1.5 * pop-state) + beta * hierarchyinfluence) 

        ifelse random-number < pRedToBlue        

        [  

          set color blue 

        ] 

        [  

          set color red 

        ] 

      ]    

     

end 

 

to calc-pop-state 

  set blue-fraction count (turtles with [color = blue]) / count turtles 

  set pop-state ((2 * blue-fraction) - 1) 

end     

   

 



to plot-counts 

  set-current-plot "Pop-State vs Count" 

  plot pop-state 

end 

 


