Aggregate Hours Adjustment in Frictional Labor Markets

Michael Krause
Deutsche Bundesbank

Thomas Lubik
Federal Reserve Bank of Richmond

Freie Universität Berlin

October 22, 2008
Introduction

• In standard RBC and New Keynesian models, all variation in labor input is due to variation in hours per worker (intensive margin)
Introduction

• In standard RBC and New Keynesian models, all variation in labor input is due to variation in hours per worker (intensive margin)

• In the standard search and matching model, all variation in labor input is in the number of workers (extensive margin)
Introduction

• In standard RBC and New Keynesian models, all variation in labor input is due to variation in hours per worker (intensive margin)

• In the standard search and matching model, all variation in labor input is in the number of workers (extensive margin)

• In the data, 33% to 50% of the overall volatility of hours worked is due to variation in hours per worker
Introduction

• In standard RBC and New Keynesian models, all variation in labor input is due to variation in hours per worker (intensive margin)

• In the standard search and matching model, all variation in labor input is in the number of workers (extensive margin)

• In the data, 33% to 50% of the overall volatility of hours worked is due to variation in hours per worker

• The aim of this paper is to explain this pattern in the real business cycle extension of the search and matching model, which includes both the extensive and intensive margins.
Introduction

• In standard RBC and New Keynesian models, all variation in labor input is due to variation in hours per worker (intensive margin)

• In the standard search and matching model, all variation in labor input is in the number of workers (extensive margin)

• In the data, 33% to 50% of the overall volatility of hours worked is due to variation in hours per worker

• The aim of this paper is to explain this pattern in the real business cycle extension of the search and matching model, which includes both the extensive and intensive margins

• In the search and matching model with both margins:
 – employment adjustment is costly and subject to frictions
 – In response to shocks, firms instantaneously increase output by raising hours per employed worker
 – over time, demand is met by increasing employment
Introduction

• We show that the search and matching model has difficulty explaining the relative volatilities of hours and employment:
Introduction

• We show that the search and matching model has difficulty explaining the relative volatilities of hours and employment:
 – the correlation of hours and employment tents to be too high
 – hours per worker are too volatile relative to employment
Introduction

• We show that the search and matching model has difficulty explaining the relative volatilities of hours and employment:
 – the correlation of hours and employment tends to be too high
 – hours per worker are too volatile relative to employment

• Closely related to the Shimer (2005) finding, that the model cannot explain the volatilities of vacancies and unemployment
Introduction

• We show that the search and matching model has difficulty explaining the relative volatilities of hours and employment:
 – the correlation of hours and employment tends to be too high
 – hours per worker are too volatile relative to employment

• Closely related to the Shimer (2005) finding, that the model cannot explain the volatilities of vacancies and unemployment
 – however, calibrations and shocks that help resolve the labor market volatility puzzle do not help fix this “hours puzzle”
 – these fixes lead to counterfactual correlations between hours and other variables
Introduction

• We show that the search and matching model has difficulty explaining the relative volatilities of hours and employment:
 – the correlation of hours and employment tents to be too high
 – hours per worker are too volatile relative to employment

• Closely related to the Shimer (2005) finding, that the model cannot explain the volatilities of vacancies and unemployment
 – however, calibrations and shocks that help resolve the labor market volatility puzzle do not help fix this “hours puzzle”
 – these fixes lead to counterfactual correlations between hours and other variables
Outline

- Stylized facts
- Baseline RBC model with search frictions in the labor market
- Mechanisms and puzzles: the hours and employment margins
- Calibration and Simulation
- Exploring solutions: shocks and parameters
- Outlook and conclusions
Data

• Measures of hours worked and its components: average hours per worker times employment divided by the civilian labor force

• Establishment survey: 1964:1 to 2007:4
 – based on payroll data
 – employment numbers fairly exact; hours per worker not so much

• Household survey: 1976:1 to 2007:4
 – based on survey responses
 – both series imprecise, but cover all workers
Hours and Employment, Establishment Survey (red: hours per worker, blue: total hours, green: employment)
Hours and Employment, Household survey
The data

Table 1: Measures of Hours Worked

<table>
<thead>
<tr>
<th></th>
<th>Standard Deviation (%)</th>
<th>Correlation (N,H)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Hours</td>
<td>Employment</td>
</tr>
<tr>
<td>Data Set 1</td>
<td>1.55</td>
<td>1.28</td>
</tr>
<tr>
<td>Data Set 2</td>
<td>1.19</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Table 2: Business Cycle Statistics

<table>
<thead>
<tr>
<th>Standard Deviation (%)</th>
<th>U</th>
<th>V</th>
<th>V/U</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.71</td>
<td>9.36</td>
<td>16.76</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>TH</td>
<td>I</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>1.10</td>
<td>4.86</td>
<td>1.41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correlation</th>
<th>(U,V)</th>
<th>(H,W)</th>
<th>(H,TH)</th>
<th>(H,Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.93</td>
<td>0.72</td>
<td>0.71</td>
<td>0.72</td>
</tr>
</tbody>
</table>
The Data

• Total hours about as volatile as output
• Hours per worker explain 33% to 50% of total hours variation
• Employment and hours are positively correlated
The Data

- Total hours about as volatile as output
- Hours per worker explain 33% to 50% of total hours variation
- Employment and hours are positively correlated

- High volatilities of vacancies, unemployment, and tightness
- Wages and hours are less volatile than output
- Hours positively correlated with wages, total hours, and output.
The model

- Aggregate household with continuum of workers, utility from bundle of consumption goods and hours worked, perfect risk sharing

- Monopolistically competitive firms with flexible prices, capital accumulation and investment adjustment costs
The model

- Aggregate household with continuum of workers, utility from bundle of consumption goods and hours worked; perfect risk sharing
- Monopolistically competitive firms with flexible prices, capital accumulation and investment adjustment costs
- Frictional labor market: matching function, hiring time-consuming
- Nash bargaining over wages and hours
- Shocks: technology, markup, labor supply, intertemporal preference, investment-specific technology, matching
Households

- Welfare of household

\[W(N_{it}) = \max_{C_{it}} E_\tau \sum_{t=0}^{\infty} \beta^t \zeta_t \left[\frac{C_{it}^{1-\sigma} - 1}{1 - \sigma} - \chi_t N_{it} \frac{H_{it}^{1+\mu}}{1 + \mu} \right] \]

- Budget constraint

\[W_t H_{it} N_{it} + (1 - N_{it}) b + D_{it} + r_t K_{it-1} = T_t + I_{it} + C_{it} \]

- Capital accumulation (rented to firms)

\[K_{it} = (1 - \delta) K_{it-1} + \psi_t I_{it} \left(1 - S \left(\frac{I_{it}}{K_{it}} \right) \right) \]

- Consumption aggregate

\[C_{it} = \left(\int_0^1 C_{it,j} \frac{\epsilon_{t-1}}{\epsilon_t} dj \right)^{\frac{\epsilon_t}{\epsilon_t - 1}} \]

- Yields: Euler equation, Q-theoretical equation, goods demand
Firms

• Present value of profits

\[\mathcal{J} j(N_t) = E_0 \sum_{t=0}^{\infty} \beta^t \lambda_t \left[\left(\frac{P_{jt}}{P_t} \right)^{1-\epsilon} Y_t - W_{jt}N_{jt}H_{jt} - r_t K_{jt} - c(V_{jt}) \right], \]

• Demand for product

\[Y_{jt} = \left(\frac{P_{jt}}{P_t} \right)^{-\epsilon_t} Y_t, \]

• Production function (capital rented from households)

\[Y_{jt} = A_t K_{jt}^{1-\alpha} (H_{jt}N_{jt})^\alpha, \]

• Employment evolution (\(\rho \) constant)

\[N_{jt} = (1 - \rho) \left[N_{jt-1} + V_{jt-1}q(\theta_{t-1}) \right], \]

• Matching function \(M_t = V_t q(\theta_t) = m_tU_t^\xi V_t^{1-\xi}, \) with \(\theta_t = V_t/U_t \)
Bargaining over wage and hours

- Wages and hours chosen to maximize

\[
\left(\frac{1}{\lambda_t} \frac{\partial W_t(N_t)}{\partial N_t} \right)^\eta \left(\frac{\partial J_t(N_t)}{\partial N_t} \right)^{1-\eta}
\]

Bargaining yields a wage equation

\[
W_tH_t = \eta \phi_t \alpha \frac{Y_t}{N_t} + (1 - \eta) \left(b + \frac{C_t \chi_t H_t^{1+\mu}}{1 + \mu} \right) + \theta_t \eta c
\]

and an hours equation

\[
C_t \chi_t H_t^{1+\mu} = \varphi_t \alpha^2 Y_t / N_t
\]
Bargaining over wage and hours

- Wages and hours chosen to maximize

\[
\left(\frac{1}{\lambda_t} \frac{\partial W_t(N_t)}{\partial N_t} \right)^{\eta} \left(\frac{\partial J_t(N_t)}{\partial N_t} \right)^{1-\eta}
\]

Bargaining yields a wage equation

\[
W_tH_t = \eta \varphi_t \alpha \frac{Y_t}{N_t} + (1 - \eta) \left(b + \frac{C_t^\sigma \chi_t H_t^{1+\mu}}{(1 + \mu)} \right) + \theta_t \eta c
\]

and an hours equation

\[
C_t^\sigma \chi_t H_t^{1+\mu} = \varphi_t \alpha^2 Y_t/N_t
\]

- Insert hours equation into wage equation

\[
W_tH_t = \left(\eta + (1 - \eta) \frac{\alpha}{1 + \mu} \right) \varphi_t \alpha \frac{Y_t}{N_t} + (1 - \eta) b + \theta_t \eta c
\]
Wages and job creation

- Job creation condition

\[
\frac{c}{q(\theta_t)} = (1 - \rho)E_{t+1} \beta_{t+1} \left[\varphi_{t+1} \alpha \frac{Y_{t+1}}{N_{t+1}} - W_{t+1}H_{t+1} + \frac{c}{q(\theta_{t+1})} \right]
\]
Wages and job creation

• Job creation condition

$$\frac{c}{q(\theta_t)} = (1 - \rho) E_t \beta_{t+1} \left[\varphi_{t+1} \alpha \frac{Y_{t+1}}{N_{t+1}} - W_{t+1} H_{t+1} + \frac{c}{q(\theta_{t+1})} \right]$$

• Inserting the wage

$$W_t H_t = \left(\eta + (1 - \eta) \frac{\alpha}{1 + \mu} \right) \varphi_t \alpha \frac{Y_t}{N_t} + (1 - \eta) b + \theta_t \eta c$$

into job creation condition

$$\frac{c}{q(\theta_t)} = (1 - \rho) E_t \beta_{t+1}$$

$$\left[(1 - \eta) \left(1 - \frac{\alpha}{1 + \mu} \right) \varphi_{t+1} \alpha \frac{Y_{t+1}}{N_{t+1}} - (1 - \eta) b $$

$$- \left(\theta_{t+1} \eta c - \frac{c}{q(\theta_{t+1})} \right) \right]$$

• Analyse the responsiveness of return to posting vacancies to changes in expected variables
Why the model cannot explain labor market dynamics

• Linearized job creation condition \((\hat{\theta}_t = \hat{V}_t - \hat{U}_t)\)

\[
\xi \hat{\theta}_t = E_t \hat{\beta}_{t+1} \\
+ \frac{q(\theta)}{c} \Phi E_t \left[\hat{\varphi}_{t+1} + \hat{Y}_{t+1} - \hat{N}_{t+1} \right] \\
- (1 - \rho) \beta [\eta q(\theta) \theta - \xi] E_t \hat{\theta}_{t+1}
\]

• with \(\Phi = (1 - \rho) \beta (1 - \eta) \left(1 - \frac{\alpha}{1+\mu}\right) \alpha \varphi \frac{Y}{N}\)

• Expected value of \(\hat{\theta}_{t+1}\) is multiplied by \(\eta q(\theta) \theta - \xi\).
Why the model cannot explain labor market dynamics

- Linearized job creation condition \((\hat{\theta}_t = \hat{V}_t - \hat{U}_t) \)

\[
\xi \hat{\theta}_t = E_t \hat{\beta}_{t+1}
\]

\[
+ \frac{q(\theta)}{c} \Phi E_t \left[\hat{\varphi}_{t+1} + \hat{Y}_{t+1} - \hat{N}_{t+1} \right]
\]

\[-(1 - \rho) \beta [\eta q(\theta)\theta - \xi] E_t \hat{\theta}_{t+1}
\]

- with \(\Phi = (1 - \rho)\beta (1 - \eta) \left(1 - \frac{\alpha}{1 + \mu} \right) \alpha \varphi_N^Y \)

- Expected value of \(\hat{\theta}_{t+1} \) is multiplied by \(\eta q(\theta)\theta - \xi \).

 - For plausible calibrations, this is close to zero. E.g. \(\eta = 0.5, \xi = 0.4, \) and job finding rate \(\theta q(\theta) = 0.8 \)
 - When \(\eta = 0 \), then future labor market tightness is not offset by coinciding wage increase. (Hall and Shimer)

- Expected values of \(\hat{\varphi}_{t+1}, \hat{Y}_{t+1}, \) and \(\hat{N}_{t+1} \) are multiplied by \(q(\theta)/c \)
Why the model cannot explain labor market dynamics

- Steady state job creation condition, simplified

\[
\frac{c}{q(\theta)} = B \left((1 - \eta) [x - b] - \theta \eta c \right)
\]

or

\[
\frac{c}{q(\theta)}(1 + B \theta q(\theta) \eta) = B \left((1 - \eta) [x - b] \right)
\]

with \(x = \left(1 - \frac{\alpha}{1+\mu} \right) \varphi \alpha \frac{Y}{N} \) and \(B = \frac{(1-\rho)\beta}{1-(1-\rho)\beta} \).

- All depends on \(x - b \). If \(x \) close to \(b \), then \(c/q(\theta) \) very small.

- Shimer calibrated \(b \) to be about 0.5 which is about half \(x \).

- Hagedorn and Manovskii argue that \(b \) is large, close to \(x \). Then Mortensen-Pissaridies model can explain labor market volatilities.
Closing the model

• Symmetric equilibrium: individual choices equal aggregates.

• Aggregate output

\[Y_t = C_t + I_t + cV_t \]

• Markup

\[\varphi_t = \frac{\epsilon_t - 1}{\epsilon_t} \]

• Rental rate of capital

\[r_t = (1 - \alpha)\varphi_t \frac{Y_t}{K_{t-1}} \]

• Investment dynamics

\[Q_{it} = E_t\beta_{t+1}[Q_{it+1}(1 - \delta) + r_{t+1}] \]

\[1 = Q_{it}\psi_t \left[\left(1 - \Phi \left(\frac{I_{it}}{I_{it-1}} \right) \right) - \Phi' \left(\frac{I_{it}}{I_{it-1}} \right) \frac{I_{it}}{I_{it-1}} \right] \]

\[+ E_t\beta_{t+1}Q_{it+1}\psi_{t+1}\Phi' \left(\frac{I_{it+1}}{I_{it}} \right) \left(\frac{I_{it+1}}{I_{it}} \right)^2 \]
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.99</td>
<td>Discount Factor</td>
</tr>
<tr>
<td>σ</td>
<td>1</td>
<td>Intertemporal substitution</td>
</tr>
<tr>
<td>μ</td>
<td>1</td>
<td>labor supply elasticity</td>
</tr>
<tr>
<td>b</td>
<td>0.7</td>
<td>outside option of workers</td>
</tr>
<tr>
<td>η</td>
<td>0.5</td>
<td>bargaining power</td>
</tr>
<tr>
<td>ρ</td>
<td>0.1</td>
<td>job destruction rate</td>
</tr>
<tr>
<td>ξ</td>
<td>0.5</td>
<td>matching elasticity</td>
</tr>
<tr>
<td>m</td>
<td>0.4</td>
<td>match efficiency</td>
</tr>
<tr>
<td>c</td>
<td>0.05</td>
<td>cost of vacancies</td>
</tr>
<tr>
<td>ϵ</td>
<td>11</td>
<td>demand elasticity</td>
</tr>
<tr>
<td>α</td>
<td>0.67</td>
<td>labor share</td>
</tr>
<tr>
<td>δ</td>
<td>0.025</td>
<td>depreciation</td>
</tr>
<tr>
<td>s</td>
<td>0.5</td>
<td>investment adjustment</td>
</tr>
</tbody>
</table>
Simulations

Table 4: Business Cycle Statistics: Alternative Shocks

<table>
<thead>
<tr>
<th></th>
<th>Standard Deviation (rel. to GDP)</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U V θ H TH W I</td>
<td>(U,V) (H,N) (H,W) (H,Y)</td>
</tr>
<tr>
<td>Data</td>
<td>7.71 9.36 16.76 0.30 1.10 0.67 4.86</td>
<td>-0.93 0.53 0.72 0.72</td>
</tr>
<tr>
<td>Tech.</td>
<td>0.39 0.46 0.75 0.30 0.32 0.76 3.14</td>
<td>-0.54 0.63 0.70 0.84</td>
</tr>
<tr>
<td>Demand</td>
<td>0.97 1.14 1.85 1.17 1.22 1.37 3.99</td>
<td>-0.52 0.79 0.92 0.94</td>
</tr>
<tr>
<td>Leisure</td>
<td>0.39 0.46 0.75 1.26 1.28 0.42 3.13</td>
<td>-0.56 0.79 -0.76 0.97</td>
</tr>
<tr>
<td>Discount</td>
<td>0.40 0.47 0.81 0.73 0.93 0.73 7.36</td>
<td>-0.73 0.58 -0.29 0.74</td>
</tr>
<tr>
<td>Invest.</td>
<td>0.28 0.32 0.60 0.85 0.86 0.82 6.83</td>
<td>-0.92 0.30 -0.42 0.65</td>
</tr>
</tbody>
</table>
Simulations

- No shock can generate realistic unemployment or vacancy volatility
- Almost all variation is due to hours per worker
- Only investment specific shock: realistic Beveridge curve
- Leisure, intertemporal, and investment shock: negative hours-wage correlation
- Matching shock delivers volatilities, but gets comovement wrong
- However, hours-employment correlation about right.
Robustness

- Results obtained under baseline calibration with elastic labor supply and moderate outside option of workers
- lower labor supply elasticity should reduce hours variation
- higher unemployment benefit should increase labor market volatility
- lower bargaining power should increase volatility
Table 5: Business Cycle Statistics: Robustness

<table>
<thead>
<tr>
<th></th>
<th>Standard Deviation (rel. to GDP)</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U V θ H TH W I</td>
<td>(U,V) (H,N) (H,W) (H,Y)</td>
</tr>
<tr>
<td>Data</td>
<td>7.71 9.36 16.76 0.30 1.10 0.67 4.86</td>
<td>-0.93 0.53 0.72 0.72</td>
</tr>
<tr>
<td>Labor Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ = 5</td>
<td>0.04 0.05 0.09 0.09 1.05 3.03</td>
<td>-0.99 0.58 0.69 0.78</td>
</tr>
<tr>
<td>μ = 0</td>
<td>0.81 5.28 5.60 0.55 0.64 0.49 3.24</td>
<td>-0.31 -0.62 -0.76 -0.27</td>
</tr>
</tbody>
</table>

Benefit

Bargaining
Table 6: Business Cycle Statistics: Robustness

<table>
<thead>
<tr>
<th></th>
<th>Standard Deviation (rel. to GDP)</th>
<th>Correlation</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(U,V)</td>
<td>(H,N)</td>
<td>(H,W)</td>
<td>(H,Y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>7.71 9.36 16.76 0.30 1.10 0.67 4.86</td>
<td>-0.93 0.53 0.72 0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu = 5)</td>
<td>0.04 0.05 0.09 0.09 1.05 3.03</td>
<td>-0.99 0.58 0.69 0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu = 0)</td>
<td>0.81 5.28 5.60 0.55 0.49 3.24</td>
<td>-0.31 -0.62 -0.76 -0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benefit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b = 0.95)</td>
<td>1.92 4.45 5.90 0.25 0.57 0.41 2.85</td>
<td>-0.64 -0.57 -0.53 -0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b = 0.40)</td>
<td>0.05 0.06 0.11 0.30 0.30 0.89 3.15</td>
<td>-0.97 0.60 0.62 0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bargaining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Business Cycle Statistics: Robustness

<table>
<thead>
<tr>
<th></th>
<th>Standard Deviation (rel. to GDP)</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>V</td>
</tr>
<tr>
<td>Data</td>
<td>7.71</td>
<td>9.36</td>
</tr>
<tr>
<td>Labor Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>0.81</td>
<td>5.28</td>
<td>5.60</td>
</tr>
<tr>
<td>Benefit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b = 0.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.92</td>
<td>4.45</td>
<td>5.90</td>
</tr>
<tr>
<td>0.05</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>(b = 0.40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\eta = 0.99)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.26</td>
<td>1.20</td>
<td>1.40</td>
</tr>
<tr>
<td>(\eta = 0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.69</td>
<td>1.78</td>
<td>3.46</td>
</tr>
</tbody>
</table>
Understanding hours variation

• Optimal hours choice

\[H_t = \left(\varphi_t \alpha^2 \frac{Y_t C_t^{-\sigma}}{N_t \chi_t} \right)^{\frac{1}{1+\mu}} \]

• For simplicity assume that there is no capital so that \(C_t = Y_t = A_t N_t H_t \):

\[H_t^{\mu+\sigma} = \varphi_t A_t^{1-\sigma} \frac{1}{\chi_t N_t^\sigma} \]

• The less employment \(N \) responds to an initial shock, the more will hours \(H \) be moving

• Movements in \(N \) will reduce response of hours

• As employment rises over time, hours per worker will fall

• The more volatility in \(N_t = 1 - U_t \), the lower is volatility in \(H_t \), and the more realistic comoments
A More Formal Empirical Approach

- Calibration and simulation analysis shows that no single specific shock nor parameterization can resolve the various puzzles.
- However, each specification is able to match selected statistics.
- Likelihood-based estimation of the full model delivers a weighting scheme that reconciles the different directions.
- Consequently, we estimate the model on data for unemployment, vacancies, hours, output, and investment using Bayesian methods:
 - prior: based on baseline calibration
 - shocks: technology, mark-up, disutility, matching, investment
Results

• Estimation algorithm resolves the tension in the model in the following way:
 – low hours elasticity μ -> match relative hours volatility
 – low worker bargaining power η and benefit b -> high incentive for vacancy creation
 – important role of mark-up and matching shocks

• Estimation results are at odds with typical parameter choices and shock processes used in calibration studies

• Estimation reveals advantage of systems approach of taking models to the data
Posterior Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior</th>
<th>Posterior</th>
<th>90% Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Risk Aversion</td>
<td>σ</td>
<td>1.00</td>
<td>0.60</td>
</tr>
<tr>
<td>Labor Supply Elasticity</td>
<td>μ</td>
<td>1.00</td>
<td>4.92</td>
</tr>
<tr>
<td>Elast. of Matching</td>
<td>ξ</td>
<td>0.30</td>
<td>0.22</td>
</tr>
<tr>
<td>Scaling Factor Matching Function</td>
<td>m</td>
<td>0.70</td>
<td>0.73</td>
</tr>
<tr>
<td>Elast. of Vacancy Cost</td>
<td>ψ</td>
<td>1.00</td>
<td>4.96</td>
</tr>
<tr>
<td>Vacancy Creation Cost</td>
<td>κ</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Bargaining Power</td>
<td>η</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>Worker Outside Option</td>
<td>b</td>
<td>0.40</td>
<td>0.09</td>
</tr>
<tr>
<td>Separation Rate</td>
<td>ρ</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>Elasticity of Demand</td>
<td>ϵ</td>
<td>11.00</td>
<td>9.80</td>
</tr>
<tr>
<td>Input Elasticity</td>
<td>α</td>
<td>0.67</td>
<td>0.64</td>
</tr>
<tr>
<td>Investment Adjustment Elasticity</td>
<td>s</td>
<td>10.00</td>
<td>6.04</td>
</tr>
</tbody>
</table>

Variance Decompositions

<table>
<thead>
<tr>
<th></th>
<th>Technology</th>
<th>Markup</th>
<th>Lab.Supply</th>
<th>Matching</th>
<th>Inv.Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0.11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.88</td>
<td>0.00</td>
</tr>
<tr>
<td>V</td>
<td>0.50</td>
<td>0.21</td>
<td>0.00</td>
<td>0.28</td>
<td>0.00</td>
</tr>
<tr>
<td>H</td>
<td>0.02</td>
<td>0.35</td>
<td>0.31</td>
<td>0.05</td>
<td>0.25</td>
</tr>
<tr>
<td>Y</td>
<td>0.72</td>
<td>0.02</td>
<td>0.02</td>
<td>0.17</td>
<td>0.06</td>
</tr>
<tr>
<td>I</td>
<td>0.23</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.72</td>
</tr>
</tbody>
</table>
Conclusions

• Attempt to match stylized facts about hours and employment when there are search and matching frictions in the labor market

• In the data, 30% to 50% of total hours variation is due to variation in hours per worker.
Conclusions

- Attempt to match stylized facts about hours and employment when there are search and matching frictions in the labor market.

- In the data, 30% to 50% of total hours variation is due to variation in hours per worker.

- We find that the model predicts almost all variation in total hours is due to variation in hours per worker.

- None of the included shocks can bring the labor market variables closer to the data.

- The calibrations that raise labor market volatilities lead to counterfactual correlation between hours and employment.
Conclusions

• Attempt to match stylized facts about hours and employment when there are search and matching frictions in the labor market

• In the data, 30% to 50% of total hours variation is due to variation in hours per worker.

• We find that the model predicts almost all variation in total hours is due to variation in hours per worker.

• None of the included shocks can bring the labor market variables closer to the data.

• The calibrations that raise labor market volatilities lead to counterfactual correlation between hours and employment.

• Estimation basically imposes real wage rigidity, but requires atypical parameter values

• Further work: contemporaneous hiring, overtime and effort, wage setting assumptions