Brückenkurs Mathematik

Freie Universität Berlin Professur für Ökonometrie

Wintersemester

Einführung Algebra Wurzeln Ungleichungen Absolutbetrag Gleichungen Summen

Warum (wieder) Mathematik?

Mathematik ist unglaublich nützlich, z. B. für die

- 1. Formalisierung und Modellierung von Sachverhalten,
- 2. Optimierung und Entscheidungsfindung,
- 3. Quantifizierung und Messung,
- 4. Argumentation und logisches Denken,
- 5. Kommunikation und Zusammenarbeit,
- 6. und um das Studium erfolgreich zu meistern!

Einführung Algebra Wurzeln Ungleichungen Absolutbetrag Gleichungen Summen #2

Warum Brückenkurs?

Die Teilnahme am Brückenkurs lohnt sich, wenn

- Mathelücken geschlossen werden sollen,
- die Schulzeit schon etwas länger her ist,
- Spaß an der Mathematik besteht

Im Brückenkurs werden nur Inhalte wiederholt, die aus der Schule **eigentlich** schon bekannt sein sollten!

Der neue Stoff kommt erst im Laufe des Semesters.

Einführung Algebra Wurzeln Ungleichungen Absolutbetrag Gleichungen Summen #.

Brückenkurs - Aufbau

- Unbenoteter Test zur Selbsteinschätzung
- ► Wiederholung von Basiswissen in Mathematik
- Grundlage für Pflichtmodule in BWL und VWL
- Folien, Übungsaufgaben und Lösungen im Blackboardkurs von Mathematik für Wiwiss
- Anmeldung über Campus Management schaltet Blackboard (in der Regel) automatisch frei

Einführung Algebra Wurzeln Ungleichungen Absolutbetrag Gleichungen Summen

Literatur

Kapitel 1-3 aus Sydsæter, K. et al. Mathematik für Wirtschaftswissenschaftler

- Verfügbar in der Bibliothek zur Ausleihe und zum vor Ort lesen
- Auf digitale Version hat leider immer nur eine Person Zugriff
- Lest die ersten Kapitel und löst die Übungsaufgaben
- Wird auch während des Semesters in Mathe verwendet

Inhalt

- 1. Einführung
 - ▶ Motivation
 - Organisatorisches
- 2. Algebra
 - ► Zahlen
 - ► Potenzen mit ganzem Exponenten
 - Regeln der Algebra
 - ► Brüche
- 3. Wurzeln
 - ▶ Quadratwurzel
 - ► *n*-te Wurzel
- 4. Ungleichungen
 - ► Notation
 - ► Rechenregeln
 - ▶ Vorzeichendiagramm

- 5. Absolutbetrag
 - ► Notation
 - ► Ungleichungen mit Absolutbeträgen
- 6. Gleichungen
 - ► Einfache Gleichungen
 - ► Quadratische Gleichungen
 - ► Lineare Gleichungssyteme
- 7. Summen
 - ▶ Notation
 - ► Summen in der Statistik

Einführung Algebra Wurzeln Ungleichungen Absolutbetrag Gleichungen Summen #6

Zahlen

- ► Natürliche Zahlen N
 - 1, 2, 3, 4, . . .
- ► Ganze Zahlen \mathbb{Z} 0, ±1, ±2, ±3
- ► Rationale Zahlen \mathbb{Q} $\frac{a}{b}$ mit $a, b \neq 0 \in \mathbb{Z}$, z. B. $\frac{1}{5}, -\frac{2}{3}$
- ► Reele Zahlen \mathbb{R} z. B. $e, \pi, \sqrt{2}$

Abbildung Zusammenhang von \mathbb{N} , \mathbb{Z} , \mathbb{Q} und \mathbb{R}

Einführun

Algebra

Wurzeli

ngleichunge

Absolutbetra

Gleichung

Summen

Potenzen mit ganzem Exponenten

$$a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ Faktoren}} \text{ mit Basis } a \text{ und Exponent } n$$

Eigenschaften von Potenzen

$$ightharpoonup a^r \cdot a^s = a^{r+s}$$

$$ightharpoonup (a^r)^s = a^{rs}$$

$$ightharpoonup \frac{a^r}{a^s} = a^{r-s}$$

$$a^{-n} = \frac{1}{a^n}$$

►
$$a^{0} = 1$$

► Im Allgemeinen:
$$(a+b)^r \neq a^r + b^r$$

Beispiel: Zusammenfassen von Potenzen mit gleicher Basis

$$3^8 \cdot 3^{-2} \cdot 3^{-3}$$

Aufgabe 1

So weit wie möglich vereinfachen:

a)
$$3^{-1} \cdot 2^4 \cdot 3^3 \cdot 2^{-5}$$

b)
$$8^{-2} \cdot 4^{-4} \cdot 8^3 \cdot 4^3$$

c)
$$2^m \cdot 3^n \cdot 2^{-n} \cdot 3^{-m}$$

d)
$$4^p \cdot 3^q \cdot 4^{-2p} \cdot 3^{2q}$$

e)
$$a^4 \cdot b \cdot c^3 \cdot b^{-1} \cdot c^2 \cdot a^{-2}$$

f)
$$s^3 \cdot t^{-2} \cdot u^4 \cdot t^3 \cdot s^{-4} \cdot u^{-2}$$

g)*
$$\frac{a^5}{a^{-3}}$$

h)*
$$(-1)^{2n} + (-1)^{2m+1}$$
, mit $n, m \in \mathbb{Z}$

Anwendung von Potenzen

Eine Größe K_0 , die jedes Jahr um p% zunimmt (abnimmt), wird nach t Jahren auf

$$K(t) = K_0 \left(1 + \frac{p}{100}\right)^t$$
 bzw. $K(t) = K_0 \left(1 - \frac{p}{100}\right)^t$

anwachsen (fallen).

Beispiel:

Ein neues Auto wurde für € 15.000 gekauft. Es verliert jedes Jahr 15% an Wert. Wie groß ist der Wert nach 6 Jahren?

Einführung **Algebra** Wurzeln Ungleichungen Absolutbetrag Gleichungen Summen # 10

Aufgabe 2

- a) Studierende bekommen auf ein Software-Paket für € 199 beim Kauf 30% Ermäßigung. Was kostet das Software-Paket für Studierende?
- b) Auf einem Sparkonto wird ein einmaliger Betrag von € 500 am Anfang eines Kalenderjahres eingezahlt. Die Bank zahlt 4% Zinsen pro Jahr. Über welchen Betrag kann nach 5 Jahren verfügt werden?
- c) Wie viel Geld hätten Sie vor 5 Jahren bei einem Zinssatz von 8% bei der Bank anlegen müssen, um heute € 1.000 zu haben?

inführung **Algebra** Wurzeln Ungleichungen Absolutbetrag Gleichungen Summen # 11

Regeln der Algebra

$$\triangleright$$
 $a+b=b+a$

$$(a+b)+c=a+(b+c)$$

$$ightharpoonup a + o = a$$

►
$$a + (-a) = 0$$

$$ightharpoonup$$
 $ab = ba$

$$(ab)c = a(bc)$$

$$ightharpoonup$$
 $1 \cdot a = a$

$$ightharpoonup aa^{-1} = 1 \text{ für } a \neq 0$$

$$(-a)b = a(-b) = -ab$$

$$ightharpoonup a(b+c) = ab + ac$$

$$(a+b)c = ac + bc$$

Regeln der Algebra

Beispiel: Ausdrücke vereinfachen

$$5a^{2} - 3b - (-a^{2} - 3b) - 3(a^{2} + b) =$$

$$= 5a^{2} - 3b + a^{2} + 3b - 3a^{2} - 3b$$

$$= 3a^{2} - 3b = 3(a^{2} - b)$$

Einführung Algebra

Aufgabe 3

So weit wie möglich vereinfachen:

a)
$$3 \cdot 4 - 2 \cdot 6 - 3(4 - 5)$$

b)
$$2 \cdot 5 - 3 \cdot 4 + 3(6 - 5)$$

c)
$$(5a-2b)-(-3a+7b)-(6a-8b)$$

d)
$$cd - d(a - b) + (-a + c)(-d)$$

e)
$$(2pq-3p^2)(p+2q)-(q^2-2pq)(2p-q)$$

f)
$$[(8-6)3+4(8+3\cdot 2-7)-2] \div 16$$

$$g$$
)* $(4p-3q)-(-8p-4q)-(3p+6q)$

h)*
$$[(4-2)5+3[(2-12\cdot3+40)-3]] \div 19$$

Einführung

Binomische Formeln

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$

3.
$$(a+b)(a-b) = a^2 - b^2$$

Beispiel 1: Ausmultiplizieren und Zusammenfassen

$$(3x+2y)^2 = (3x+2y) \cdot (3x+2y)$$

$$= 3x \cdot 3x + 3x \cdot 2y + 2y \cdot 3x + 2y \cdot 2y = 9x^2 + 12xy + 4y^2$$

Einführung

Algebra

Wurzeln

ngleichungen

Absolutbetra

Gleichunge

Algebraische Ausdrücke

Ein Ausdruck mit Variablen x und y

$$3xy - 5x^2y^3 + 2xy + 6y^3x^2 - 3x + 5yx + 8$$

Einzelne Terme

$$3xy$$
, $5x^2y^3$, $2xy$, $6y^3x^2$, $3x$, $5yx$, 8

Terme vom selben Typ

$$3xy$$
, $2xy$, $5yx$, $5x^2y^3$, $6y^3x^2$, $3x$, und 8

Numerische Koeffizienten

$$3, -5, 2, 6, -3, 5, 8$$

Einführung

Algebraische Ausdrücke zusammenfassen

$$3xy - 5x^2y^3 + 2xy + 6y^3x^2 - 3x + 5yx + 8$$

1. Terme vom selben Typ sammeln

$$3xy + 2xy + 5yx - 5x^2y^3 + 6y^3x^2 - 3x + 8$$

- 2. Numerische Koeffizienten an den Anfang (Hier schon erledigt!)
- 3. Buchstaben der Terme in alphabetischer Reihenfolge

$$\underbrace{3xy + 2xy + 5xy - 5x^2y^3 + 6x^2y^3}_{=10xy} - 3x + 8$$

4. Höhere Potenzen nach vorne

$$x^2y^3 + 10xy - 3x + 8$$

5. Terme mit mehr Faktoren nach vorne (Hier schon erledigt!)

Zerlegen in Faktoren (Faktorisierung)

- Zum Vereinfachen von Ausdrücken, Kürzen von Brüchen und Lösen von Gleichungen
- Einen Ausdruck zu faktorisieren bedeutet, ihn als Produkt **einfacher** Faktoren zu schreiben:

$$49 = 7 \cdot 7$$

$$5x^3y^3 - 15xy^2 = 5xy^2(x^2y - 3)$$

Das geht z.B. durch Ausklammern gemeinsamer Faktoren (oben 7 und $5xy^2$).

Beispiel: Faktorisieren

$$-18b^2 + 9ab = 9ab - 18b^2 = 3 \cdot 3b(a - 2b)$$

$$16a^2 - 1 = (4a)^2 - 1^2 \cdot 1 = (4a + 1)(4a - 1)$$

Einführung

Aufgabe 4

Klammern auflösen (a,b,d,e,g,h) bzw. Ausdrücke in Faktoren zerlegen (c,f,i):

a)
$$(1-x)^2$$

f)
$$9x^2 - 49$$

b)
$$4(u+1)^2$$

g)
$$(2a+3b)(2a-3b)$$

c)
$$a^2 - 4ab + 4b^2$$

h)*
$$(3x + 4y)^2$$

d)
$$(3u - 5v)^2$$

i)*
$$4z^2 - 25w^2$$

e)
$$(x+2)(x-2)$$

Brüche

$$a \div b = \frac{a}{b}$$
 \leftarrow Zähler \leftarrow Nenner

Eigenschaften von Brüchen

$$-\frac{a}{b} = \frac{(-1) \cdot a}{b} = \frac{-a}{b}$$

$$ightharpoonup \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

$$a + \frac{b}{c} = \frac{ac}{c} + \frac{b}{c} = \frac{ac + b}{c}$$

$$a \cdot \frac{b}{c} = \frac{ab}{c}$$

Brüche berechnen

Beispiel 1: Addition und Subtraktion

$$\frac{3}{5} + \frac{2}{15} - \frac{1}{3} =$$

Beispiel 2: Multiplikation und Division

$$\left(\frac{3}{5} \div \frac{2}{15}\right) \cdot \frac{1}{9} =$$

Beispiel 3: Doppelbruch

 $\frac{2}{\frac{3}{4}} \cdot \frac{\frac{8}{3}}{4} =$

Kürzen von Brüchen

Vereinfache soweit wie möglich

$$\frac{5x^2yz}{25xy^2z^3} =$$

$$\frac{x^2 + xy}{x^2 - y^2} =$$

$$\frac{4 - 4a + a^2}{a^2 - 4} =$$

Einführung

Aufgabe 5

So weit wie möglich berechnen:

a)
$$\frac{7}{2} + \frac{13}{3} - \frac{1}{6}$$

b)
$$\frac{1}{2} - \frac{1}{3} + \frac{1}{6}$$

c)
$$\frac{8}{\frac{3}{4}} \cdot \frac{\frac{8}{3}}{4}$$

d)
$$\left[\left(\frac{3}{7} : \frac{9}{14} \right) \cdot 3 \right] : \frac{1}{6}$$

e)
$$\frac{2+a}{a^2b} + \frac{1-b}{ab^2} - \frac{2b}{a^2b^2}$$

$$f) \frac{16x - 8y - 12z}{4xyz}$$

g)
$$\frac{\frac{1}{x} + \frac{1}{y}}{\frac{1}{xy}}$$

h)
$$\frac{3}{2b} - \frac{5}{3b}$$

Potenzen mit gebrochenem Exponenten

Wie definieren wir a^x für eine rationale Zahl x?

Beispiel: Produktionsfunktion $Y = K^{\frac{1}{4}}L^{\frac{3}{4}}$

Die Quadratwurzel

Wir definieren $a^{\frac{1}{2}} = \sqrt[2]{a} = \sqrt{a}$ für a > 0. Das heißt, dass die Quadratwurzel mit sich selbst multipliziert a ergibt.

Hinweis: Die Quadratwurzel ist nicht-negativ!

Einführun

Algebra

Wurzeln

ıgleichungen

Absolutbetra

Gleichunge

ummen

Die Quadratwurzel

Wir wissen, dass
$$(-2)^2 = 4$$
 und $2^2 = 4$.

Das heißt,
$$x^2 = 4$$
 hat zwei Lösungen: $x_1 = -2$ oder $x_2 = 2$.

Wir schreiben auch
$$x = \pm \sqrt{4} = \pm 2$$

Jedoch ist
$$\sqrt{4} = 2$$
 und **nicht** -2 .

Einführun

n-te Wurzel

Definition:

$$a^{\frac{1}{n}} = \sqrt[n]{a}, \quad n \in \mathbb{N}$$
 $a^{p/q} = \left(\sqrt[q]{a}\right)^p = \sqrt[q]{a^p} \quad p \in \mathbb{Z}, q \in \mathbb{N}$

Beispiel 1

$$\sqrt{1600} =$$

Beispiel 2

$$\frac{\left(\sqrt[8]{a}\right)^3}{\left(\sqrt[8]{a}\right)} =$$

Aufgabe 6

So weit wie möglich berechnen:

a)
$$\sqrt[3]{27a^{12}} - \sqrt{4a^8}$$

b)
$$\sqrt[3]{27x^{3p}y^{6q}z^{12r}}$$

c)
$$\sqrt[4]{x^8y^{12}z^{20}} \cdot \sqrt{x^{-2}y^{-4}z^{-6}}$$

d)
$$\frac{\sqrt{4a^2 + 24ab + 36b^2}}{2(a^2 - 9b^2)}$$

e)*
$$\frac{\sqrt[3]{a} \cdot a^{\frac{1}{12}} \cdot \sqrt[4]{a^3}}{\sqrt{a} \cdot a^{\frac{5}{12}}}$$

f)*
$$\sqrt[4]{\sqrt[3]{\sqrt{a}}}$$

Einführun

Algebra

Wurzeln

ngleichungen

Absolutbetra

Gleichunge

Summen

Ungleichungen

Reelle Zahlen bestehen aus

- Positiven Zahlen: a > 0 d.h. a ist größer als 0,
- ► Null o,
- Negativen Zahlen: b < o d.h. b ist kleiner als o.

Definition

Die Zahl a ist strikt größer als b, wenn a-b positiv ist. Wir schreiben:

$$a > b$$
 oder $b < a$

Strikte und schwache Ungleichungen:

- ▶ Wenn a > b, dann ist a strikt größer als b.
- ▶ Wenn a > b oder a = b, dann ist a größer oder gleich b, d.h. $a \ge b$

Einführung Algebra Wurzeln **Ungleichungen** Absolutbetrag Gleichungen Summen #:

Rechenregeln für Ungleichungen

Für positive Zahlen gilt

1)
$$a > 0$$
 und $b > 0 \Rightarrow a + b > 0$ und $a \cdot b > 0$

Im Allgemeinen gilt

2)
$$a > b$$
 $\Rightarrow a + c > b + c \quad \forall c \text{ (für alle } c\text{)}$

- 3) $a > b \text{ und } c > 0 \implies ac > bc$
- 4) $a > b \text{ und } c < 0 \implies ac < bc$
- 5) $a > b \text{ und } b > c \implies a > c$
- 6) $a > b \text{ und } c > d \implies a + c > b + d$

Das selbe gilt für "≥" statt ">".

Einführung Algebra Wurzeln **Ungleichungen** Absolutbetrag Gleichungen Summen #:

Multiplikation von Ungleichungen

- Werden beide Seiten einer Ungleichung mit einer positiven Zahl multipliziert, bleibt die Richtung der Ungleichung erhalten.
- Werden beide Seiten einer Ungleichung mit einer negativen Zahl multipliziert, kehrt sich die Richtung der Ungleichung um.
 (Dies gilt allgemein für nicht monotone Transformationen)
- ► Werden beide Seiten einer Ungleichung mit einer unbekannten Variable x multipliziert, muss eine Fallunterscheidung für x > 0 und x < 0 vorgenommen werden.

Einführung Algebra Wurzeln **Ungleichungen** Absolutbetrag Gleichungen Summen #3

Beispielaufgaben: Ungleichungen I

Für welche Werte von x sind die Ungleichungen erfüllt?

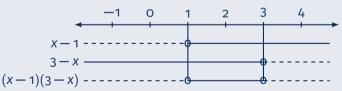
Beispiel 1: Einfache Ungleichung

$$3x-5>x-3 \iff 3x>x+2 \iff 2x>2 \iff x>1$$

Beispiel 2: Vorzeichendiagramm

$$(x-1)(3-x) > 0$$

Bestimmen der Vorzeichen der einzelnen Faktoren:



Einführung

Algebra

Wurzel

Ungleichungen

Absolutbetra

Gleichunge

Summen

Beispielaufgaben: Ungleichungen II

Beispiel 3: Vorzeichendiagramm

$$\frac{2p-3}{p-1} > 3-p$$

Einführung

Algebra

Wurzeln

Ungleichungen

Absolutbetra

Gleichunge

Summen

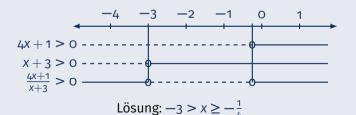
Beispielaufgaben: Ungleichungen III

Beispiel 4: Vorzeichendiagramm

$$\frac{(x-2)+3(x+1)}{x+3} \le 0$$

$$\Leftrightarrow \frac{4x+1}{x+3} \le 0$$

$$4x+1>0 \Rightarrow x>-\frac{1}{4} \text{ und } x+3>0 \Rightarrow x>-3$$



Einführung

Algebra

Wurzeln

Ungleichungen

Absolutbetra

Gleichunger

Aufgabe 7

Welche $x \in \mathbb{R}$ sind Lösungen folgender Ungleichungen?

a)
$$26 + 3(x-5) > 7(x+1)$$

b)
$$3x - (x - 1) \ge x - (1 - x)$$

c)
$$x^2 \ge 9$$

d)
$$(x-1)^2(x+4) > 0$$

e)
$$\frac{12-2x}{3x} < 2$$

$$f) \ \frac{4-2x}{3} \le 7$$

Intervalle und Ungleichungen

Name	Notation	Enthält x mit:
Offenes Intervall	(a, b)	a < x < b
Geschlossenes Intervall	[a, b]	$a \le x \le b$
Halboffenes Intervall	(a, b]	$a < x \le b$
	[a, b)	$a \le x < b$

ightharpoonup Die Länge aller Intervalle ist b-a

Einführung Algebra Wurzeln **Ungleichungen** Absolutbetrag Gleichungen Summen # 35

Absolutbeträge

Der Abstand zwischen $a \in \mathbb{R}$ und o heißt Absolutbetrag:

$$|a| = \begin{cases} a & \text{für } a \ge 0 \\ -a & \text{für } a < 0 \end{cases}$$

- \triangleright |a| = |-a| = a
- ightharpoonup Wenn a=2, dann |2|=2
- ▶ Wenn a = -5, dann |-5| = -(-5) = 5

Beispiel 1: Abstand zwischen (-5) und 2

$$|(-5)-2|=$$

Einführung

Algebra

Ungleichungen mit Absolutbeträgen

- ightharpoonup |x| < a bedeutet -a < x < a
- $|x| \le a$ bedeutet $-a \le x \le a$
- |x| > a bedeutet x < -a oder a < x

Beispiel 2: Bestimmen Sie x, sodass:

$$|3x-2| \leq 5$$

$$9 - x^2 < 0$$

Einführun

Algebra

1.
$$|5 - 3x|$$

- a) Berechne |5-3x| für (i) x=-1, (ii) x=2 und (iii) x=4.
- b) Löse die Gleichung |5 3x| = 0
- c) Forme |5-3x| um, indem du die Definition des Absolutbetrags benutzt.
- 2. Bestimme x, sodass

a)
$$|x| \le 2$$

b)*
$$|x^2 - 2| \le 1$$

Einfache Gleichungen

Drei Beispiele für einfache Gleichungen

a) Mit Variable x:

$$3x + 10 = x + 4$$

b) Mit variable z:

$$\frac{z}{z-5} + \frac{1}{3} = \frac{-5}{5-z}$$

c) Mit drei Variablen Y, C und I:

$$Y = C + I$$

Lösen einer Gleichung

Alle Werte der Variablen finden, für die die Gleichung erfüllt ist.

Einführung

Algebra

Lösen von Gleichung a)

Lösen durch Umformungen auf **beiden Seiten** der Gleichung.

$$3x + 10 = x + 4 \qquad |-x|$$

$$\Leftrightarrow \qquad 2x + 10 = 4 \qquad |-10|$$

$$\Leftrightarrow \qquad 2x = -6 \qquad | \div 2|$$

$$\Leftrightarrow \qquad x = -3$$

Gleichung a) hat eine eindeutige Lösung bei x = -3. Die Lösungsmenge ist $L = \{-3\}$.

Einführung Algebra Wurzeln Ungleichungen Absolutbetrag **Gleichungen** Summen #40

Beispiele: Gleichungen

Lösen von Gleichung b)

$$\frac{z}{z-5} + \frac{1}{3} = \frac{-5}{5-z}$$

Einführun

Algebra

Wurzeln

ngleichungen

Absolutbetra

Gleichungen

Summen

Beispiele: Gleichungen

Für welche Werte von x ist die Gleichung erfüllt?

$$\frac{x+2}{x-2} - \frac{8}{(x-2)x} = \frac{2}{x}$$

Einführun

Algebra

Wurzeln

gleichungen

Absolutbetras

Gleichungen

Summen

Bestimme die Lösungen der folgenden Gleichungen:

a)
$$2x - (5 + x) = 16 - (3x + 9)$$

d)
$$\frac{x+2}{x+4} = \frac{x-1}{x+5}$$

b)
$$\frac{6x}{5} - \frac{5}{x} = \frac{2x - 3}{3} + \frac{8x}{15}$$

c)
$$\frac{x-3}{4}+2=3$$

e)*
$$\frac{x}{x-a} + \frac{x}{x-b} = 2$$

Einführun

Algebra

Wurzeln

ngleichungen

Absolutbetra

Gleichungen

Summen

Quadratische Gleichungen

Allgemeinform:
$$ax^2 + bx + c = 0$$
, wobei $a \neq 0$

Normalform:
$$x^2 + px + q = 0$$
 mit $p = b/a$ und $q = c/a$

Spezialfälle:

1)
$$p = 0$$
, d.h. $x^2 + q = 0 \iff x^2 = -q$
für $q > 0$: keine reelle Lösung
für $q < 0$: $x_{1,2} = \pm \sqrt{-q}$

2)
$$q = 0$$
, d.h. $x^2 + px = 0 \iff x(x+p) = 0$
 $\iff x_1 = 0 \text{ und } x_2 = -p$

Beispiel: Spezialfall 2)

$$x^2 - 4x = 0$$

Einführung

Lösen von quadratischen Gleichungen

Beispiel: Quadratische Ergänzung

$$x^2 + 8x - 9 = 0$$

Formeln:

▶ p-q-Formel: Funktion in Normalform ($x^2 + px + q = 0$)

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q \text{ für } \frac{p^2}{4}} \ge q$$

► Mitternachtsformel: Allgemeinform ($ax^2 + bx + c = o$)

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 für $b^2 - 4ac \ge 0$ und $a \ne 0$

Einführung

Bestimme die Lösungen der folgenden Gleichungen:

a)
$$3x^2 + 6x = 9$$

b)
$$-2x^2 + 20 = -6x$$

c)
$$x^2 + 10x = -25$$

d)
$$-\frac{1}{4}x^2 + \frac{1}{2}x + \frac{1}{2} = 0$$

Einführun

Gleichungssysteme mit zwei Unbekannten

(I)
$$2x + 3y = 18$$

(II)
$$3x - 4y = -7$$

- ► Ein lineares Gleichungssystem ist eindeutig lösbar, wenn es genau so viele Gleichungen wie Unbekannte besitzt.
- ▶ Lösbar durch
 - * Einsetzen der Gleichungen ineinander
 - * Gleichsetzen der Gleichungen
 - * Umformungen einzelner Gleichungen
 - * Addieren von Gleichungen (beide Seiten!)
 - * Oder: Gauß'sches Eliminationsverfahren (Mathekurs)

Einführung Algebra Wurzeln Ungleichungen Absolutbetrag **Gleichungen** Summen #47

Lösen eines linearen Gleichungssystems

Beispiel

(I)
$$2x + 3y = 18$$

(II)
$$3x - 4y = -7$$

Einführung

Algebra

Wurzeln

Ungleichungen

Absolutbetras

Gleichungen

Bestimme die Lösungen der folgenden Gleichungssysteme:

a)
$$I: x + 3y = 10$$

 $II: 2x + 2y = 12$

b)
$$I: x - y = 5$$

 $II: x + y = 11$

c)
$$I: 2x - 4y = 8$$

 $II: 3x - 6y = 15$

d)
$$I: 2x - 4y = 8$$

 $II: 3x - 6y = 12$

e)*
$$I: 4x - 3y = 1$$

 $II: 2x + 9y = 4$

f)*
$$I: 23p + 45q = 181$$

 $II: 10p + 15q = 65$

Einführun

Algebra

Wurzeln

ıgleichungeı

Absolutbetra

Gleichungen

Summennotation I

$$N_1 + N_2 + N_3 + N_4 + N_5 + N_6 = \sum_{i=1}^{6} N_i$$

- ► Summenzeichen: ∑
- ► Summationsgrenzen: 1 und 6
- Summationsindex: i

Beispiel:

$$\sum_{i=1}^{5} i^2 =$$

Einführun

Algebra

Summennotation II

Allgemeine Grenzen: p, q sind ganze Zahlen und $q \ge p$

$$\sum_{i=p}^{\mathbf{q}} a_i = a_p + a_{p+1} + \ldots + a_q$$

Anzahl der Summanden: q - p + 1

Beispiel: Summe einer Konstanten

$$\sum_{i=2}^{5} 3 =$$

Einführung Algebra Wurzeln Ungleichungen Absolutbetrag Gleichungen **Summe**n

Summen in der Statistik

Das arithmetische Mittel (Mittelwert) \bar{x} von n Zahlen x_1, x_2, \dots, x_N ist definiert als

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Beispiel: Summe der Abweichungen vom Mittelwert

Zeige, dass
$$\sum_{i=1}^{N} (x_i - \bar{x}) = 0$$
.

Einführun

Algebra

Wurzeln

ngleichungen

Absolutbetra

Gleichungen

1.
$$\sum_{i=2}^{5} (3i-3)$$

2.
$$\sum_{m=-1}^{2} (2m+1)$$

3. Drücke die folgenden Summe mit Hilfe des Summenzeichens aus:

(i)
$$1^3 + 2^3 + 3^3 + 4^3 + \cdots + n^3$$

(ii)
$$3x + 9x^2 + 27x^3 + 81x^4 + 243x^5$$

4. Zeige, dass
$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

5. Zeige, dass
$$\sum_{i=1}^{n} (ca_i) = c \sum_{i=1}^{n} a_i$$

6.
$$\sum_{i=1}^{5} c_i$$

7.
$$\sum_{i=3}^{10} 2$$

8. Das arithmetische Mittel ist definiert als $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$. Zeige, dass die Summe der Abweichungen vom arithmetischen Mittel Null ist:

$$\sum_{i=1}^{N} (x_i - \bar{x}) = 0$$

53

Einführung Algebra Wurzeln Ungleichungen Absolutbetrag Gleichungen Summen